MENU iconMENU
農糧領域
農糧領域
2025/12/30
研發利用香茅油進行天然驅蟲的可生物分解覆蓋膜,幫助農民減少塑膠製品的使用,減少對土壤生物造成負面影響的塑膠微粒釋放。
2025/12/29
利用基因編輯技術針對致病菌進行基因切割,精準破壞真菌中的關鍵基因,使其失去感染力,不僅成功保護香蕉產業,更有助於打造更具韌性與永續性的農業系統。
2025/12/28
藉由了解植物在演化中面對低磷環境時衍生出的應對機制,幫助研究人員作為培育「營養智慧型」作物研發基礎,在貧瘠土壤中穩定產量,保障糧食安全。
2025/12/27
藉由調查並彙整茄子基因組與農藝性狀,了解性狀、基因與環境間的關聯,協助育種人員培育更適合當地環境與符合市場需求的客製化品種
2025/12/26
新加坡國立大學的研究團隊創造了第一個全有機植物電子表皮,用於連續、非侵入性的植物監測。開發了數位孿生植物監測系統,將從植物電子表皮收集的數據轉化為即時植物物理特徵的可視化,為作物育種和精準農業的高效決策鋪平道路。
2025/12/23
芬蘭赫爾辛基大學的研究團隊探討透過使用伴生植物(如紅三葉草、苜蓿和菊苣)來增加田野生態系統中的植物多樣性是否能影響微生物群落的結構和功能,以促進土壤健康和碳封存。這些技術使得研究者能夠深入了解植物多樣性如何影響土壤微生物的反應。
2025/12/22
氣候變遷導致野生動物棲地與資源縮減,人們需打造具氣候韌性的野生動物棲地,提供穩定資源,減少動物侵擾。
2025/12/20
利用AI與遙測技術結合應用,可望幫助乾旱地區更妥善進行農業規劃與減少水資源消耗。
2025/12/19
由澳洲莫納什大學生物科學學院研究團隊透過系統性回顧與整合大量植物生物學研究,分析植物對溫度的反應機制,並提出一套全新的理論模型,挑戰了過去單一感溫器官的假設。研究強調,這種分散式的熱感知不僅涉及多個蛋白質和基因調控網路,還與植物的生長發育及防禦機制緊密結合,為精準育種和人工智慧輔助作物改良開啟新方向。
2025/12/18
在農糧署指導下,嘉義大學攜手中興大學與宜蘭大學舉辦「百變鮮蔬‧新煮食」成果記者會,展示國產蔬菜精準加工與保存創新;以高麗菜、青蔥等作物為例,透過低鹽、低酸、冷鏈與高靜水壓等技術,成功延長保存期限並提升應用彈性,協助蔬菜產業由盛產滯銷走向全年穩定供應,開創高值化新藍圖。
2025/12/16
由美國佛羅里達大學研究團隊開發的草莓農場數位孿生技術,成功建立與真實農場1:1比例的虛擬模型,實現全年無休的草莓生長模擬。透過人工智慧在虛擬環境中訓練的草莓識別模型,不僅達到92%的果實檢測準確率,更能以1.2公釐誤差預測果實直徑。這項技術突破使農業機器人開發不再受季節限制,大幅降低研發成本與時間,為價值5億美元的佛州草莓產業及全美20億美元產業提供創新解決方案。
2025/12/15
以色列希伯來大學農業學院與農業研究機構Volcani研究所團隊結合無人機遙測技術與基因組分析,建立高效篩選抗旱小麥品種的新方法。團隊運用搭載熱成像與高光譜相機的無人機,非接觸式監測300種小麥基因型在水分充足與乾旱條件下的生理反應,成功識別出調控氣孔導度、葉面積指數與葉綠素含量的關鍵基因標記。這項技術突破不僅將水資源利用效率評估精度提升28%,更大幅加速耐旱品種的育成進程,為應對氣候變遷下的糧食安全提供新工具。

網站導覽
活動資訊
訂閱RSS
電子報訂閱