MENU
趨勢快訊
魚鱗膠原蛋白有助血管傷口癒合
2018/05/10
膠原蛋白(collagen)是人體內含量最豐富的蛋白質,約占人體總蛋白質的25-35%,可組成皮膚、骨骼、韌帶、血管、角膜等構造。膠原蛋白由於特殊的三股螺旋體多胜肽鏈結構,能夠在人體組織之間產生骨架般的支撐保護力、彈性與伸展性,透過調節控制分子通過與調控細胞組織的生理能力,也可以修護組織促進傷口癒合。因此,膠原蛋白不僅盛行於美容、保健食品,市面上也販售醫用級膠原蛋白傷口敷料、人工硬骨、人工軟骨、骨骼填補劑等醫療用品,同時人工眼角膜及新藥劑型也處於研發階段。然而,目前市面上主要使用的膠原蛋白多半來自於豬、牛、雞等動物來源,然而畜牧動物的基因遺傳特性與人類較為接近,若萃取膠原蛋白的動物取自於傳染病疫區,則可能增加使用者連帶感染之風險。   新加坡南洋理工大學(Nanyang Technological University)研發團隊在Acta Biomaterialia期刊發表了近期的研究結果,實驗團隊與當地魚場合作,使用吳郭魚(Tilapia)、蛇頭魚(Snakehead fish)、鱸魚(Sea bass)之魚鱗作為原料,將從魚鱗萃取的第一型膠原蛋白進行甲基化修飾,並利用1,4-丁二醇縮水甘油醚 (1,4-butanediol diglycidyl ether)交聯聚合,改善了魚鱗膠原蛋白的物理性質以及低熱穩定性,創造出水溶性膠原蛋白,提供了此類膠原蛋白加入藥物的可能性。另外,透過觀察不同魚鱗製造的膠原貼片於小鼠體內的生物相容性實驗,發現植入膠原貼片可改善附近的血管和淋巴管的生長情形,並加速血管癒合。【延伸閱讀】棉花纖維氣凝膠於醫療上之應用   初步成本預估,從10克魚鱗就能取得約200毫克的膠原蛋白,100毫克的膠原蛋白成本大約4星幣。而根據聯合國糧農組織發布的2016年世界漁業和水產養殖狀況報告,預估至2025年時水產養殖產量將達到1.02億噸;處理魚貨的過程中,大量魚鱗常直接作為廢棄物丟棄,實為可惜;若能利用低成本魚鱗作為醫用膠原蛋白來源,除了幫助水產加值利用,也能避免來自豬皮、牛皮等來源所產生的人畜共通疾病與宗教議題。   相關研究發表於<Acta Biomaterialia>
兒茶素奈米載體具應用在癌症治療上的潛力
2018/04/24
隨著世界人口與人類平均年齡不斷增長,罹患癌症與惡性腫瘤患者也越來越多。國際抗癌聯盟(Union for International Cancer Control,UICC)指出,癌症導致全球每年超過800萬人死亡,最常使用的治療方式為手術去除、化學藥物治療及放射線治療。由於現行的治療方式無法準確地清除掉患者體內的癌細胞,治療過後仍具復發與轉移的可能性;因此奈米尺寸的標靶藥物則逐漸成為抗癌與基因治療的研發主流。   作為標靶治療的藥物需要依靠有力的藥物傳輸系統,才能準確地將藥物傳送到標的組織。然而,欲將奈米藥物提升到臨床應用,需要先克服藥物在動物體內的生物屏障,避免藥物在到達指定區域以前就先受到降解或是被免疫細胞包圍排出。新加坡生物工程與奈米科技研究院(Institute of Bioengineering and Nanotechnology,IBN)於2014年時開發出由兒茶素合成的奈米載體-poly(ethylene glycol)-epigallocatechin-3-O-gallate (EGCG);現在更將此載體與抗癌藥物Doxorubicin組成複合物,因兩者結構相似,故具有優異的結合力與體內穩定性。【延伸閱讀】蕁麻可催化新的抗癌藥物,提高化療效果   透過動物實驗測試,此複合藥物能夠準確抑制小鼠體內的人類肝癌細胞,且毒性極低,或許可作為未來癌症治療的工具之一,成功減少患者治療的副作用。此項研究開發了綠茶兒茶素除了抗氧化外功能以外的其他特性,拓展了綠茶產品的應用領域。相關研究發表於<Advanced Materials>
製作人羊嵌合體之突破
2018/04/17
受到疾病或意外影響,部分醫療人口需要經由器官移植才有復原的希望;雖然目前已有器官捐贈推廣及人工製造器官的研發,器官移植需求仍然龐大。以美國為例,每年就有超過十萬顆的心臟需求,但只有約兩千人能接受心臟移植;為解決此一困境,各界研究人員正努力找尋再生醫學發展之相關出路,包含3D列印技術、人造機械器官等,另外還有科學家正在嘗試製造含有兩種不同物種的嵌合體(chimaera)—希望人類器官能成功長在親緣關係較相近的豬或綿羊身上。   然而此種想法需要克服不同物種間的免疫排斥問題,成為再生醫學研究發展上的重大障礙,因此使用不同來源之多能性幹細胞(pluripotent stem cell, PSC)為另一種新的選擇,且PSC需具有良好的自我更新能力、分化多能性並與細胞移植之個體相容,才適合作為發展標的。2017年時〈Cell〉期刊已發表了關於PSC衍生物—種間囊胚互補(Interspecies blastocyst complementation),提供了在動物身上產生人體器官的可能性發展研究。   首先分離一種動物的幹細胞,注入另一物種(宿主)的胚胎中,再利用CRISPR-Cas9編輯融合胚胎的基因組防止免疫排斥,通過此種方式,人體器官就能在其他動物體內生長。2017年時研究人員已在大鼠(rats)身上培養出小鼠(mouse)胰腺,且移植胰腺可以治療小鼠的糖尿病,也成功使注入人類幹細胞的豬胚胎存活28天;然而豬胚胎中的人類細胞數量約為十萬分之一,而目前預估成功的器官移植須至少達到百分之一的細胞比率,故此研究仍有突破空間。【延伸閱讀】利用DNA檢測食物中微量的花生成份   經過一年的改進與測試,加利福尼亞大學戴維斯分校(University of California, Davis)的研究人員Pablo Ross於2018年美國科學促進會上(American Association for the Advancement of Science annual meeting)宣布創造了第二個成功的人—動物嵌合體:0.01%的人羊胚胎。但美國國立衛生研究院目前禁止公共資助人畜混合動物,且法規規定不得使此種胚胎發育超過28天,這些外在因素也限制了相關技術的發展。   雖然再生醫學中所使用的方法皆具有不同爭議,但都為面臨死亡的病人提供一線希望,直至真正廣泛應用到臨床醫療之前,仍需醫界、工程界及生物科學界共同努力。
幫助液態檢體診斷新技術
2018/03/30
細胞間的訊息依其分泌的胞外囊泡(Extracellular vesicles, EVs )傳送,通過血液或體液傳達到身體其他區域,這些囊泡扮演著溝通與微環境調節的角色。因此囊泡運輸系統中與疾病相關的生物標記分子(biomarker),可作為協助癌症、心血管或血液疾病的臨床診斷之用。但囊泡顆粒為奈米大小,具高擴散性及流動性,因此分離過程較為困難且耗時,傳統上需要依靠超高速離心機執行。   來自新加坡國立大學(National University of Singapore)研發新型裝置,名為microfluidic CEntrifugal Nanoparticles Separation and Extraction (µCENSE),具有短時間分離與疾病相關的循環生物標記分子(Circulating biomarker)之相關潛力。此項技術較為簡單、快速且方便,能幫助臨床液態生物檢體(liquid biopsy)診斷。   研究團隊首先利用微流體離心技術(Microfluidic centrifugal technique),分離癌細胞培養液中的囊泡。將樣本置入具有特殊設計之彎曲分離微通道的μCENSE晶片,之後把μCENSE加裝至一般實驗室專用之離心機,以離心力分離界於100-1000奈米(nm)的囊泡。透過分析其中的核酸與蛋白質等biomarker成分及含量,便能協助特殊疾病的檢查及診斷。【延伸閱讀】以犬骨、羊骨做為家鴿骨折的新興固定材料   研究顯示,此裝置能成功分離出帶有標記分子CD63的囊泡,且分離速度比傳統的超高速離新技術快100倍。目前團隊正積極朝向優化μCENSE晶片設計以增加分離量。希望此項技術未來能協助臨床癌症、心血管或血液疾病等研究,或許在未來也能將其擴增應用於動物醫學領域,加速動物疾病診斷與生理途徑相關研究等,保障動物健康及福利。   相關研究發表於AIP Biomicrofluidics
利用植物根部生產人類蛋白質
2018/03/19
Rhizobium rhizogenes是一種根瘤菌目下的細菌,若植物傷口受到此細菌感染就會導致分支多、根毛多、無向地性的毛狀根(hairy roots, HRs)產生。毛狀根與正常的植物根不同,從受感染的植物上切斷後置於液體培養基中能持續生長,具有生長速度快、分化程度高與遺傳性狀相對穩定等特點。由於以上特點,無法順利於細菌等原核生物中表現的外源基因,可嘗試使用細菌感染植物產生的毛狀根作為表現外源蛋白與大規模增殖之工具,且目前已有人類基因於毛狀根表達而產生外源蛋白的例子。   脂肪酶是人類腸道中分解脂肪的酵素,有些人由於天生的染色體缺陷而缺少胰脂肪酶,這種缺陷會導致囊狀纖維化(cystic fibrosis),造成呼吸道、胰臟、腸胃道、汗腺等外分泌腺器官功能異常,進而增加感染跟發炎的機會。一般會給此類患者補充從動物性來源的胰脂肪酶,但動物性產品具有傳播病毒或普里昂蛋白等風險;故以植物生產酵素以作為人類治療補充劑是未來需要發展的替代方法。【延伸閱讀】伴侶動物對居家醫療的貢獻潛力   本研究利用油菜(又稱蕓薹,學名為Brassica rapa)的毛狀根作為產生人類胰脂肪酶的工具,利用生長劑2,4-D(2,4-dichlorophenoxyacetic acid)刺激毛狀根,產生類似癒傷組織的構造。此外,相較於未處理組,在添加2,4-D的毛狀根培養基中偵測到兩倍以上的脂肪酶活性,表示這些組織可能有助於生產大量的外源性蛋白質;作者建議將以上使用毛狀根生產蛋白的方式系統命名為「rhizocalli」,相關內容發表於Plant Cell, Tissue and Organ Culture (PCTOC)。
新型纖維素可望降低生質能源成本並治療感染
2018/03/12
纖維素(cellulose)為植物、藻類及細菌產生的一類胞外多醣,是構成細胞壁(cell wall)與生物膜(biofilm)的重要成分,也是地球上最豐富的生物性聚合物。纖維素使用範圍廣泛,從紙張到建築材料均可見其蹤跡;除此之外,還能作為生產生質酒精的起始材料。   生質酒精可以從玉米等含糖量高的農用原料製造,但會壓縮到玉米的糧食用途,且以往將分解纖維素成葡萄糖會消耗較多成本。美國史丹佛大學(Stanford University)化學系和德國柏林漢堡大學(Humboldt-Universität zu Berlin)的微生物學研究所合作,發現了大腸桿菌製造的新型纖維素-PEtN cellulose (phosphoethanolamine cellulose),此研究將可幫助減少纖維素轉化的時間與擴展其用途。【延伸閱讀】魚鱗膠原蛋白有助血管傷口癒合   細菌所分泌的生物膜具有良好的彈性與張力,可增強細菌抵抗逆境的能力。大腸桿菌(Escherichia coli)分泌的生物膜中具有特殊修飾過的pEtN cellulose,屬於兩性離子聚合物,經固態核磁共振(Solid-state nuclear magnetic resonance)鑑定後發現,phosphoethanolamine group的修飾與BcsE-BcsF-BcsG等跨膜訊號分子的傳遞相關。此外,這種特殊纖維素不易形成晶體且較易溶於水,作者認為利用此種纖維素作為生質酒精的生產原料將會使得轉化過程更加順利。另外,此發現可能還能幫助醫療應用,由於生物膜與細菌的抗藥性具有密切關連,若能將研究發現的纖維素修飾基因作為標靶,或許能為人類提供新的感染治療方法。   相關研究發表於Science
使用小鼠多功能幹細胞培養更逼真的皮膚模型
2018/02/22
雖然目前已開發各種模仿真實皮膚的方法,但仿真度始終不足。哺乳類的真實皮膚由20種或更多功能不同的細胞構成,但現有的模仿組織卻只有包含其中一部分,且沒有一種能夠長出毛髮。   哺乳動物的毛囊(hair follicles,HFs)在胚胎發育期間由表皮和真皮之間的細胞相互影響而產生。在一般的動物模型中可通過多功能幹細胞(pluripotent stem cells,PSCs)分開培養成角質細胞(keratinocytes)和纖維母細胞(fibroblasts),再將兩種細胞結合。而美國的印第安納大學(Indiana University)醫學院開發了3D小鼠胚胎幹細胞培養系統(three-dimensional (3D) mouse embryonic stem cell (mESC) culture),並用來培養皮膚類器官(organoid)與模仿內耳分化,了解表皮細胞如何產生囊腫;但研究人員發現此方法還能產生具有類似毛囊的小型皮膚組織,毛囊的產生與分化有賴於表皮與真皮細胞的共同發展,此兩類細胞必須以特定的方式一起生長,才能使毛囊發育。使用肉眼觀察會發現皮膚細胞團看起來像帶毛的球體,漂浮於培養基中,毛囊向四面八方向外生長,如蒲公英種子。   皮膚類器官本身由三或四種不同類型的真皮細胞和四種類型的表皮細胞組成,比過往開發的皮膚組織更接近小鼠的真實皮膚。雖然研究小組還無法確定類器官表面上的毛髮屬於何種類型,但此技術可幫助創造更好的皮膚類器官模型,未來可用於藥物測試或是觀察觀察皮膚癌的發展等作業。【延伸閱讀】植物的衍生性揮發物質作為抗菌劑之潛力   相關研究發表於Nature、Nature Protocols和Cell Reports
全球首例以體細胞核移植成功之複製猴
2018/02/07
繼1997年「桃莉羊」利用「體細胞核移植」技術複製成功之後,20種以上之哺乳類動物複製也相繼成功,但是卻一直無法複製與人類相似的靈長類動物。生物學頂尖國際學術期刊Cell於2018年1月25日在官網上發表封面文章,中國大陸中國科學院神經科學研究所利用「體細胞核移植」(somatic cell nuclear transfer, SCNT)技術,成功複製2隻靈長類長尾獼猴(Macaca fascicularis),透過此技術未來將建立非人類之靈長類動物研究模型,加速人類遺傳疾病之新藥開發進程。   中國科學院研究團隊於本次研究中關鍵成功因素,在於採用胚胎猴的「纖維母細胞核」(fetal monkey fibroblast)做為細胞核之來源,而非成猴的「卵丘細胞核」(cumulus cells),並且利用表徵遺傳調節子(epigenetic modulators)促進胚胎細胞發育,因而大幅提高長尾獼猴之懷孕成功機率。研究團隊將胎猴纖維母細胞胚胎,植入21隻代理孕母體內,成功誘使6隻母猴受孕並產出健康的2隻小獼猴。顯示此法可使細胞較容易發生重新編程(reprogramming),成為全能性的胚胎細胞,提高體細胞核移植後成功複製的效率,且能規避掉因基因編輯衍生的脫靶效應(off- target effect)等非專一性調控之相關問題。【延伸閱讀】最新的研究發現迷你豬在野豬族群擴張的過程中扮演重要的角色   此項技術不僅為生物學帶來新的突破,也可用於精進其他複製動物的相關實驗,或許能拯救瀕危物種,維持環境中的生物多樣性。未來亦可應用於人類新藥開發前期之試驗研究,以模擬人類疾病之複製猴研究模型,來提高藥物功效之準確性,預期可加速人類於阿茲海默症、自閉症、免疫缺陷、腫瘤、代謝性等疾病之新藥開發時程,為生醫領域開啟新的里程碑。
農業未來科技技術開發-05-創新型基礎農業生物技術開發
2016/06/29
該議題的目標在於開發創新型基礎農業生物技術技術,以及利用處理量大的作物形質轉換和表型組學技術生產能夠應對氣候變化的生物技術作物。經由該議題,最尖端的基因組學和生物信息學將在農業上佔據重要地位的植物和微生物的基礎之上得到運用。從生物活體信息中篩選出具有意義的知識是該議題的重要部分。因此,將針對植物(稻、白菜、蘿蔔)和微生物(水稻白葉枯病病原菌)基因組項目(Genome Project)的結果和其中有用的遺傳基因、基因網絡模型、分子育種資源等構建國家數據庫,並開展結構基因組學和功能基因組學研究,而這將以旨在探索高價值信息的功能基因組學的相關後續研究結果為根據。為生成農業資源的標準基因組,國家農業基因組計劃(National Agricultural Genome Program)也已經啟動。目前,該計劃已經為作物、園藝植物、蘑菇、微生物的從頭測序基因組做出貢獻。此外,該計劃還將利用天然種質和序列化的基因組信息對洋白菜開展功能性研究。最後再順便補充一下,韓國國立農業生物技術信息中心(National Agricultural Biotechnology Information Center, NABIC)將充當農業生物技術信息的國家級中心角色。此外,還將通過綜合性網頁服務綜合收集研究數據,向研究機構、業界提供用戶友好型分析工具。以該議題為基礎的研究活動還包括功能基因和新型代謝物質的發現和開發。該議題所包含的研究活動(1)功能基因和新型代謝物質的發現和開發 (2)生理功能規定(3)利用基因重組DNA技術開發業界所需要的高附加值作物分析基因複合體的相關代謝途徑,為開發出用於調節代謝途徑的核心技術而運用包括轉錄組(transcriptome)、蛋白質組(proteome)、代謝組(metabolome)等在內的組學(Omics)技術。同時,也以開發高附加值作物為目標,運用關鍵基因分子技術。以作物增產為目標而調節人工照明,進而調節生長環境的技術融合也得到適用。此外,功能基因和高附加值生物技術物質的開發也是必須的。為維持具有環境持續性且靈活應對氣候變化的品質和生產率,正在以生物信息學和功能分析為基礎區分“氣候基因(Climate Genes)“。環境風險和食品安全性評估的目標在於——確認與轉基因作物栽培相關的風險,並實現特性化。而該評估的初衷為實現環境風險和食品安全性的特性化,並設計對此進行管控的手段。已經為對基因的移動性、多樣性、分佈結構進行研究而準備了試驗田(experimental fields)。而為了評估食品的安全性,也對食品毒素、過敏原、轉基因作物與非轉基因作物之間的實質等同性的相關特性進行分析。
嫁接植物的基因是互通的
2016/03/25
摘要農業嫁接的歷史可以追溯到近3000年。透過不斷的嘗試及失敗,古代的中國人和古代的希臘人意識到,剪下一段植物的枝條到另一個植物的莖進行結合,以提高作物的品質。現在,研究人員已經利用這種古老的方法結合現代遺傳研究,來顯示經嫁接植物可以共享表觀遺傳的特徵。圖:顯示在共聚焦顯微鏡下的圖像,是兩個擬南芥的基因型態的嫁接。一個基因型的細胞膜是顯示為黃色,而另一個則顯示為紅色的。Salk Institute和劍橋大學的研究人員研究sRNAs嫁接結點的動靜並在植物的基因中得到表觀遺傳的變化的結果。
倘若禁止種植轉基因作物,會如何影響到作物產量的損失,以及氣體排放等問題?
2016/03/03
摘要根據研究顯示,由於土地使用模式的改變,以及造成森林與牧場的傷害,造成糧食價格上升,溫室氣體排放量增加,促使美國禁止種植轉基因作物。
基因組編輯應用於治療之前景與挑戰
2016/03/03
摘要 最新基因編輯技術發展,改善了在真核細胞的基因組修飾能力。透過基因編輯的技術,建立細胞與動物模式,協助我們瞭解遺傳疾病的病理機制。基因編輯特色是可直接修正被影響的組織和細胞的基因突變,以治療傳統無法治癒的疾病。透過本篇基因組編輯應用於治療的研究,闡明其未來發展與挑戰。
植物育種利用新的基因組重新組合的技術在歐盟創造商機、安全和法規
2016/01/27
摘要幾種新的植物育種技術(NBPTS)在過去十年中已被開發,並讓人們可以精確地運用植物中基因組的變化型態。主要的問題,不是技術方面的問題,而是控制這些新技術模糊性的問題。2007年時歐洲專家小組做了八個NBPTS的定義,所產生的植物及其產品是否涵蓋轉基因生物的立法是一個長期爭論的話題。顯然地,有關轉基因生物的立法將嚴重地影響稅後淨營業利潤的運用,因為轉基因植物必須通過歐盟一項昂貴且耗時的轉基因生物批准程序。在這次審查中,我們比較了一些由歐盟專家小組做的NBPTS的定義,內容有關傳統育種技術和傳統的轉基因植物。在經濟合作與發展組織的國際討論過程中,NBPTS的列表可能會簡短(或延長)。從科學的角度來看,有一些爭議是NBPTS開發的植物和傳統孕育的植物往往難以區別,也期望對健康和環境不會有較高的風險。在NCBTs的未來規範辯論的結果和長期累積的證明,轉基因植物的生物技術安全已被人們商業化也被評估其風險。基因改造,NBPTS或其它未來的技術被視為植物品種改良過的技術,應該要根據新的特性做完評估後得到最終的產品,而非用技術創造新的植物品種。
由研究員揭露植物與真菌共生的核心基因集合
2016/01/26
摘要一群植物必需的基因和傳遞土壤營養的真菌,已經被科學家發現有互利的關係。他們比較這種有共生關係植物的基因組,和其他沒有共生關係的植物。愈了解共生的遺傳基礎,未來或許用更少的化學肥料施用可以獲得更好的作物產量(生產)。圖:在顯微鏡下,真菌在植物根部的細胞內呈現叢枝樹狀,這使真菌能將土壤養分傳遞給植物。這真菌即為被標定為螢光化合物者。
世界上首款由蜘蛛絲製造合成的大衣
2015/11/24
摘要 蜘蛛絲是地表上最強韌的材料之一,但你有想過蜘蛛絲可以做衣服嗎? The North Face和日本Spiber生物材料公司合作開發的「月球大衣」,據說將是全球第一件利用人工合成蜘蛛絲材料放上生產線的成衣。這個特別的蜘蛛絲纖維被稱為「QMONOS」,是從日文“kumonosu”一詞而來,意思是“蜘蛛網”。 「QMONOS」是將蜘蛛所吐出之蜘蛛絲解碼出絲蛋白的基因,再以重組DNA技術改造細菌使之產生蜘蛛絲蛋白,再合成為人工絲。除了衣服,這種強韌的材料還有許多可能的用途,如手術材料、人工血管與韌帶、自動零件和防彈衣等。 「月球大衣」,這種生物材料的環境友善特性,遠超過傳統織物。例如,棉花其實是全世界最毒的作物,種植過程的殺蟲劑用量超過全世界總用量的25%,農藥用量則佔總用量的12%。此外,相對於聚酯纖維或尼龍等石油材料,防水、耐髒卻有害人體和環境的氟碳材料或是多氟材料(PFC),「QMONOS」則是可生物分解的環境友善材料。   資料出處: EcoWatch 關鍵字: 蜘蛛絲纖維
利用咖啡渣作為燃料貯存物質
2015/11/09
摘要 科學家已經開發出一種簡單的方法來處理咖啡渣,讓它們成為可以儲存甲烷的利器。 只要透過簡易浸泡和加熱過程,就能讓咖啡渣回收再利用,並且成為捕捉碳的材料---活性碳,而能夠儲存甲烷。 甲烷的捕捉和儲存提供環境雙重的回饋,不僅能減少環境中的溫室氣體,同時被貯存的甲烷也可以作為乾淨的生質能源,代替傳統石化燃料。   資料出處: IOP Publishing 關鍵字: 咖啡渣  溫室氣體
生物時鐘LATE ELONGATED HYPOCOTYL基因可直接調控矮牽牛花香味散發時間
2015/11/02
摘要 開花植物從它們的花瓣部位散發出香味來吸引傳播花粉者。這種味道的傳送受到高度調控性,往往只侷限在每日特定的時間內。 儘管產生香味的生化途徑是具有專一性的,但目前所知的轉錄調控機制仍非常少。在報告中描述生物時鐘和花朵揮發性氣味傳遞之間的聯繫,並發現矮牽牛花香味散發時間的調節是由一個生物時鐘轉錄因子調節多個基因去參與的。 這項研究對氣味散發的複雜性以及未知的轉錄調節提供了重要的見解,同時也顯示植物在晝夜具規律性的生理時鐘內具有調控生理代謝的機制。   資料出處: PNAS 關鍵字: 生物時鐘  香味  轉錄調節
蘭花產業新利器 培養基微波消毒一貫化設備
2015/10/29
內容 蘭花產業是我國外銷重要品項之一,去年外銷產值達1億美元,總量亦突破一萬公噸。目前國內蘭苗培養基滅菌技術大多採用高溫高壓滅菌釜設備,然而現行的設備不僅操作上耗費人力,作業效率也比較低。為此,行政院農業委員會花蓮區農業改良場成功研發「微波流體培養基消毒機」,以微波快速加熱流體滅菌,大幅減少設備體積,並且結合冷卻與充填系統,達到滅菌、冷卻、充填、封裝的一貫化作業,大大提昇作業效率並改善培養基的製造流程。 ・傳統滅菌設備與方法效率低 滅菌釜是生技產業最常見的滅菌設備,是以鍋爐或電熱器將水加熱成為熱蒸汽,透過熱蒸汽將熱傳導至培養基中,以高溫滅菌。由於熱傳導效率差,滅菌階段需要20至30分鐘,此外還需要額外的升溫與降溫時間。大規模配製培養基時,如採用臥式滅菌釜滅菌,係將培養基裝瓶後批次式推入滅菌釜消毒。以處理150公升培養基為例,整個作業流程需要2名人力操作2小時,不僅費力也費時。此外,因設備佔據空間大,大多只能存放室外,使得整個蘭苗生產程序與動線受到限制,增加不少時間或空間成本。 ・微波消毒效率高 微波加熱原理是利用極性分子在高頻輻射下產生旋轉磨擦生熱。培養基中的水分子是極性分子,也是微波加熱的主要對象。由於熱是產生自分子尺度,培養基的整體升溫是快速而且均勻,滅菌時間也因此縮短,效率提高。以本場研發的「微波流體培養基消毒機」為例,滅菌程序只需15秒鐘就可完成,除了效率提高,更可避免培養基內的維生素等營養成分,在長時間高溫下分解的風險。操作時,培養基先經由預熱、攪拌與過濾等程序,再導入微波裝置進行加熱滅菌。完成滅菌後立即經由冷凝器冷卻,進入充填儲存桶暫存,之後進行分注作業。 ・一貫化作業串聯生產線 由於「微波流體培養基消毒機」設備體積較小,再加上作業方式採連續式滅菌,培養基的配製可以和前後的作業程序串聯,達到滅菌、冷卻、充填、封裝的一貫化作業,節省許多時間成本,也提高生產效率。本機器的滅菌溫度與時間均可調整,且整體作業都應用儀電控制系統與各式電磁閥控制,因此作業輕鬆省力,可謂完全自動化。 ・適用塑膠瓶大幅降低成本減輕重量 培養基在微波滅菌後,於管路中已先冷卻降溫再行暫存,因此充填容器不再受限於傳統玻璃瓶,可採用成本低廉且輕巧的塑膠瓶。不僅在容器方面可省下2/3 成本,減輕九成以上重量,在外銷上更具競爭優勢。每只外銷貨櫃以4萬瓶蘭苗計算,所需容器成本可由60萬減少至20萬元,容器重量由10噸減輕至1噸。 花蓮農改場成功研發國內第一台連續式蘭花培養基消毒機,並整合成「培養基微波消毒一貫化設備」,利用微波加熱原理快速且均勻的滅菌;並藉由一貫化作業節省大量的空間及時間成本。透過此項技術,可望對國內蘭花產業中的培養基滅菌程序,有突破性的貢獻,進而提升我國蘭花產業在全球市場上的競爭力。   資料出處: 農民學院 關鍵字: 蘭花產業  微波流體

網站導覽
活動資訊
訂閱RSS
電子報訂閱