海洋覆蓋了約70%的地表,具有調節地球氣候功能,也吸收了四分之一因人類活動所排放的二氧化碳,幫助緩衝溫室氣體排放後的衍生效應;而大氣中的二氧化碳可微溶於水形成碳酸,因此當海洋吸收的二氧化碳越多,酸化程度也越發明顯。然而,在過去兩百年間海洋酸度增加了43%,逐漸影響海洋生態系統,包含珊瑚白化、魚類發育異常、甲殼類動物骨骼脆弱等現象;預計到西元2100年時,海洋酸度可能比現在高2.5倍。
為了探討海洋酸化對魚類所造成的影響,英國艾克斯特大學(University of Exeter)與葡萄牙阿爾加維大學(University of Algarve)合作,研究歐洲鱸魚(Dicentrarchus labrax)於酸性環境下所感應到氨基酸時的電生理活動與基因表現量變化。結果發現酸性環境會影響嗅球中的神經細胞突觸傳導,進而降低嗅覺的靈敏度,使其對某些氣味的反應改變,不易辨識出食物或掠食者的確切位置,但只要將魚類放回原有環境兩小時就可使此現象恢復。【延伸閱讀】放下草蝦王國的口號,面對臺灣蝦類養殖產業的未來
由於嗅覺是魚類的重要感官之一,許多海洋魚類依靠嗅覺尋找食物、配偶或感受周圍環境,若溫室氣體排放與海洋酸化依舊持續,預計到本世紀末海洋鱸魚嗅覺的靈敏度可能只剩現在的一半,使其生存與繁殖更加困難。相關文章發表於<Nature Climate Change>
柄海鞘(Styela clava)是一種棒狀大型海鞘,原生於太平洋海岸地區,由於其可抵禦溫度與鹽度的變動,且生長密度極高,因此容易在不同地區建立起新的族群,擠壓當地的原生物種生長所需的空間及食物,甚至捕食其他當地物種隻幼蟲。此外,柄海鞘具良好附著性,可能附著在船體或是水中儀器、捕魚設備上,使得業者需要耗費更多燃料、清潔與汰換成本,成為沿海養殖業者必須面對的問題。部分亞洲國家具有食用柄海鞘的習慣,能夠稍稍控制族群數量,但除了食用以外,若是可開發更加大量利用海鞘之用途,有助於提高此類入侵種所帶來的效益。
木漿是製造紙類與其他紙製品過程中所使用的原料之一,通常由商用木材加工後剩下的材料製成,然而木漿經過數次回收利用後纖維結構會愈加脆弱,故無法多次重複利用所造成的資源浪費也是一大難題。而美國國家標準與技術研究院(National Institute of Standards and Technology ,NIST)的研究人員現在將此兩種剩餘材料結合起來,形成一種新型複合材料,內部分子以螺旋形狀堆積,形成具有韌性的「Bouligand」結構;這種特殊結構在受力時能夠吸收與導出碰撞能量,同時保持材料的完整與功能性。【延伸閱讀】開發肯亞農民儲存農作收成的大型離網型冷藏庫
因為木材本身並無天然的Bouligand結構,經過多次酸清洗的木漿內含有纖維素奈米晶體,可經由加工製成具Bouligand結構之薄膜;但純木漿薄膜易碎且無法承受強大重量,這種同時結合動物與植物資源再利用之技術突破了木漿原有的性質,且增加了紫外線反射性。目前製造此種複合材療的成本仍然較高,需要審慎評估添加量與使用範圍;未來或許可應用於食品包裝、生物醫療設備、建築與機械結構上,增加受力與減緩光線損害物體之功能性。
此研究發表於<Advanced Functional Materials>
隨著天然資源不斷耗損,永續發展的相關議題逐漸為各國所重視;然而世界上大多數的商業性漁船仍然缺乏捕撈水產的數量控管與評估,長久以來,瀕臨絕種的物種數量逐漸增加,無法持續捕撈的魚類比例達到了63%以上。但全球超過100萬人以魚為主要蛋白質來源,因此對糧食安全產生了重大威脅。
為解決此問題,歐盟科研計畫Horizon 2020中「釋放水生生物資源的潛力(Unlocking the potential of aquatic living resources)」策略旗下有51個計畫,其目標是管理、永續開發和維護水生生物資源,盡量從歐洲海洋和內陸水域獲得社會和經濟效益的最大報酬,並保護生物多樣性。其中,為了解決魚類的「兼捕」問題,2018年初成立了「SMARTFISH」四年計畫,該計畫是由挪威的SINTEF Ocean研究機構協調,團隊包含了挪威、丹麥、土耳其、法國、英國和西班牙的大學、研究機構和漁業組織等。【延伸閱讀】新的人工智慧演算法可以更好地預測玉米產量
該計畫目的是開發出一套高科技系統,透過自動化數據收集,能夠優化捕魚效率並降低人類行為對海洋生態的影響;同時也能為漁民提供漁業法規的遵守證據。研究團隊中的東英吉利大學(University of East Anglia)計算科學學院團隊將專注於開發圖像處理與電腦學習等相關技術,可用於分析閉路電視和手持性裝置拍攝的圖像,幫助提高漁民的捕撈效率,並協助提供新的漁業資源數據,避免人為的捕撈壓力與生態破壞,並增進漁業資源管理。期望通過智慧技術發展永續和環境友善之漁業,提供全球經濟背後的優良競爭性和良好的水產養殖環境,促進海洋產業創新。
帕金森氏症(Parkinson’s disease)是一種慢性中樞神經系統退化疾病,多發生在老年人身上,由於病患腦內黑質(Substantia nigra)中的多巴胺神經元退化或受到破壞,使得這些細胞無法分泌足夠的多巴胺(dopamine)供神經傳輸之用,導致四肢顫抖、動作遲緩與肌肉控制不良等臨床症狀,嚴重時會影響病人的生活起居與心理狀態。目前尚未確認此疾病發生的原因,只了解病程進況與類澱粉蛋白(amyloids)堆積有關;而除了帕金森氏症外,阿茲海默症(Alzheimer's disease)或其他多種神經性退化疾病也會因腦中堆積類澱粉蛋白(amyloids)而導致腦神經破壞。
魚肉為人類補充優良蛋白質的來源之一,且富含多種不飽和脂肪酸、維生素與礦物質等營養,部分研究也發現,攝取較多魚類的個體發生帕金森氏症與阿茲海默症的機率較低。由於魚體中的小白蛋白會引發部分人體的過敏反應,因此可推測其與人體蛋白質可產生交互作用,進而影響生理反應。瑞典查爾姆斯理工大學(Chalmers University of Technology)的研究指出,魚肉中的小白蛋白(Parvalbumin)有助於減緩與帕金森氏症相關的蛋白質結構形成。小白蛋白是一種小分子蛋白質,多半存在於肌肉、大腦和內分泌相關組織中,涉及許多與鈣結合之相關生理過程,常見的魚類包含鯡魚、鱈魚、鯉魚、鮭魚和鯛魚等皆具有豐富的小白蛋白。研究人員發現,鱈魚β-小白蛋白(Gad m 1)可以與α-突觸核蛋白(alpha-synuclein)結合,減少α-突觸核蛋白於大腦中堆積之情況。 【延伸閱讀】喝咖啡可能減緩阿茲海默症和帕金森氏症疾病風險
憑藉著健康的糧食、科學發展與日益精進的醫療技術,人類平均壽命將逐漸延長,如何減緩與治療退化性神經疾病為未來社會中的重要課題,作者也將持續研究魚小白蛋白在人體中的輸送與影響範圍,了解其作用機制。
新菸鹼類(Neonicotinoid)藥物是一種結構類似於尼古丁(Nicotine)的神經性殺蟲劑,因其具有較長的殘留活性,且對鳥類與哺乳動物的毒性較低,因此在20世紀末期被大量使用於田間噴灑,成為現今世界上最為廣泛利用的殺蟲劑之一。然而目前有越來越多研究顯示,此類藥物可能導致蜂群數量減少或生態破壞等不良結果,因此部分國家也逐漸開始限制使用。
過去十年中,澳洲使用除蟲菊精類(pyrethroid)和新菸鹼類(neonicotinoid)等殺蟲劑的情況增加,使得河流中新菸鹼類殺蟲劑的濃度提高。過往研究顯示,殺蟲劑可能影響部分水中生物成長或繁殖狀況;而澳洲大部分養蝦場主要位於河口附近,水中具有適合蝦群生長的足夠鹽分,但也同時含有自上游土地沖刷出的各種農用藥物,故研究蝦群暴露於殺蟲劑的潛在風險十分重要。【延伸閱讀】運用螞蟻費洛蒙來誘捕害蟲減少殺蟲劑於作物的噴灑
為了探討殺蟲劑對幼蝦成長的影響,聯邦科學與工業研究組織(Commonwealth Scientific and Industrial Research Organisation,CSIRO),使用草蝦(Penaeus monodon)與現今常用之殺蟲劑,包含費普尼(imidacloprid)、聯苯菊酯(bifenthin)及芬普尼(fipronil)等三種藥物進行測試。結果顯示,新菸鹼類藥物對魚類及節肢動物的毒性較高,且蝦後期幼蟲(Post-larva)暴露於聯苯菊酯和費普尼中會降低其捕獲食物的能力。此外,研究團隊也嘗試於養蝦場的水源中測試殺蟲劑的濃度,這些水源中大部分的藥物濃度均低於實驗室中所測試的毒性濃度。
然而目前所測試的毒性濃度均於實驗室中單獨進行,無法完全反映現場多種藥物間接或交叉影響的狀況,故仍需進行進一步研究才能確定新菸鹼類殺蟲劑對蝦群生態的影響。相關研究發表於〈Ecotoxicology and Environmental Safety〉。