MENU
主題專區
要進行溫室氣體減量,首先需瞭解排放情形,包含排放源、排放係數,透過精準掌握農產業碳排資訊,針對熱點投入資源進行滅量工作,建立低碳的耕作與養殖模式,推動農機電動化與設施設設能效提升,建構低碳農業。
全部主題
藉由發展具多元營養素之稻米品種以解決營養需求問題
2017/09/07
根據資料統計世界上每二人就有一人是以米飯作為每日主要熱量來源,且在現今全球發展中國家中尚有許多營養不足的人們,特別是亞洲與非洲國家的一些落後地區,雖然透過米飯之攝取可避免飢餓並提供營養,但仍無法滿足人體所需之微量營養素,當人體無法獲得足夠的鐵、鋅和維生素A來維持健康運作,將可能導致貧血、大腦發育遲緩、並增加婦女和嬰兒的死亡率等,若是兒童成長過程缺乏維生素A,則可能會導致失明、免疫系統減弱、容易感染麻疹、腹瀉或瘧疾等傳染病。 因應維生素A缺乏而創造的黃金稻米   蘇黎世聯邦理工學院(ETH)研究人員在2000年為因應營養需求,開發了一種新的水稻品種「黃金稻米」,這是第一個轉基因稻米品種之一,研究人員能在米粒的胚乳中產生維生素A的前驅物β-胡蘿蔔素,並在經過數次改善後,目前已提供東南亞地區數個國家進行育種計畫之研究使用。此外,為解決微量營養素缺乏之問題,蘇黎世聯邦理工學院Gruissem教授的植物生物技術實驗室亦積極與其他國家之研究人員致力於開發稻米和小麥穀粒中含鐵量高的品種,但迄今技術仍只能選育出含一種特殊微量營養素之稻米品種,在當時距離將數種微量營養素均包含在一株稻米上仍是一項未知的夢想。 第一株含多種營養素之稻米品種   目前ETH植物生物技術實驗室之研究小組,成功創造具有多種營養素之新品種稻米,同時將其研究結果發表在國際期刊Scientific Reports上,利用基因修飾之技術,在水稻基因組的四個不同基因座位置崁入用於微量營養素改良之基因片段,促使稻米富含足夠的鐵和鋅之微量營養素,且比起正常的稻米品種其穀物胚乳中亦含有大量的β-胡蘿蔔素,同時亦能透過與各國不同稻米品種之遺傳雜交來提升其優勢,藉由此次的研究成果證實未來將可能在單一的水稻作物中組合出數種必需的微量營養素,以提供人體健康之營養需求。   ETH之植物生物技術實驗室研究團隊花費了數年時間建立了多元營養稻米品系,藉由改良舊有的黃金稻米品種,使其較原先粳稻品種具有更多的β-胡蘿蔔素,其研究人員表示未來若能成功推廣並取代現有70%的稻米食用量,那麼將能明顯改善落後維生素A、鐵和鋅等微量營養素之補充。【延伸閱讀】生物營養強化技術使小麥更健康 在溫室中持續測試多元營養素之稻米新品種   新的多元營養稻米品系目前仍處於測試階段,其在溫室中已完成其各種微量營養素含量之分析,同時將進一步進行品系改良,下一年度將計劃在特定田間進行作物實際種植測試,以確定作物在野外及溫室中所表達的生物及理化特性是否一致,並能提供農民在田間進行生產。
全基因組定序揭開蘋果起源演化之旅
2017/09/06
在幾個世紀以前,絲路曾是歷史上橫貫歐亞大陸之重要貿易通道,透過這條通道的交流,不僅僅促進歐亞大陸間的政治與經濟開放,更促使目前全球最受歡迎水果之一的蘋果也在這樣的貨物交流中開啟其遺傳基因的傳遞。   在國際期刊Nature於8月15日發表「全基因組定序揭開蘋果起源演化歷史及果實大小的兩階段馴化話模型」之研究成果中,在美國康乃爾大學與中國山東農業大學兩大研究團隊合作之下,共蒐集來自北美、歐洲、東亞和中亞的24個代表性蘋果品種,並針對117個基因組進行全基因組定序與序列比較,從而瞭解蘋果的起源、演化以及馴化之順序。【延伸閱讀】第一組薰衣草基因組定序發表   並證實了蘋果最早是源自於中國新疆,新疆野蘋果(Malus sieversii)藉由當時絲路通往歐洲,並在運輸過程中與野生蘋果雜交,逐漸演化成現在的蘋果(Malus domestica),同時美国康乃爾大學BTI研究中心(The Boyce Thompson Institute)费章君教授也發現新疆野蘋果也曾向東發展,成為現在中國市場常見的粉蘋果品種,此研究不僅成功闡明了蘋果基因傳遞的起源,更完整呈現了蘋果演化歷史。   除了瞭解蘋果演化起源外,本研究也經由基因序列分析以及比較不同蘋果間的序列後,探討了蘋果馴化階段為何,其在過程中曾與歐洲野生蘋果雜交,使得原有蘋果品種具備酸的風味,且由於原生種在馴化前其果實碩大,也因此在後續雜交過程即保留了此項優勢,最終成為現今人們所喜愛具有較高脆度、糖分以及有基酸含量均衡之品種。   另外,本研究最後亦指出未來若透過全基因定序瞭解特定性狀與其基因組間的關係後,經由基因分子標記技術將能提升與加速特定性狀之選育速度與準確度,進而選育出具有抗病、保鮮期長、最佳風味與口感以及尺寸更好的蘋果品種。
南澳洲利用芥菜種子和稻桿作為永續替代能源
2017/09/04
為因應全球暖化與國際間能源價格不斷攀升,找到永續性替代能源和降低全球二氧化碳排放為目前的當務之急。其中溫室氣體主要來自於農業活動所仰賴的農業機械的燃料燃燒,而這些進口的燃料通常比較昂貴且對農民負擔較高。為此南澳洲當地業者採取幾項措施,期望可以降地農民生產成本與減少碳足跡。【延伸閱讀】太陽能農場排放的二氧化碳量比燃煤電廠更少 (一)利用生物燃料-芥菜種子發電的拖拉機   農業耕作過程中,農民需要大量燃料得以操作農業機械,但由於燃料價格高,而且容易受到市場價格的波動、供應短缺以及需大量仰賴進口等因素影響,為解決上述問題,南澳洲有一間公司開發了一台利用芥菜種子產生生物燃料的機器,該公司利用當地芥菜種子轉化成生物燃料,作為社區發展燃料計畫項目之一,以協助當地農業製造更多燃料。   聯合創始人兼工程經理摩根•亨特(Morgan Hunter)表示因為受到當時氣油價格居高不下的影響,為了降低當地農民負擔才開啟了這項生物燃料計畫,由於芥菜作物容易種植,每年只需要150mm的雨量,即使在旱地耕作也沒問題。而每公頃所收穫的芥菜種子可獲取300-350升的燃料。其也提到透過這類油料作物所製成的生物燃料,其品質與效率不輸給一般燃料。   另外,在製造生物燃料的過程中,亦可將油籽提取過程中所產生的副產品進行加工,作為生物製品進行銷售,所獲取的利潤可投資到當地社區的學校和醫院,已建構社區循環體制。未來期盼這個社區燃料發展計畫不僅限於在南澳洲推動而是能遍及整個國家。 (二)、以稻桿作為能源來源   澳大利亞的採礦業者對於未來能源需求的規劃,目前正開始進行其他替代能源的測試與規劃,其中以稻稈為主要發展對象。   一家當地公司計劃在約克半島附近的Ardrossan附近開發一個15MW的生物質發電廠,其原料來源將來自於作物。該公司指出目前許多採礦業者都在農業地區,為避免土地利益衝突與降低電力成本投入,考慮將與當地農民進行生物質能源的合作,以達到雙贏模式。其透過收購農作物,進行生質能源發電,一方面提供農民多元收入,另一方面也降低礦業電力能源成本,也間接增加當地經濟與商業活動。   而該公司所採用的這套生質能源發電系統是基於已經在歐洲運作的成功模組,每年僅需萬噸稻稈就能產生足夠電力。後續也指出,如果電力足夠,亦可提供與周遭社區使用。
藉由無人機技術應用,精準監測馬鈴薯種植過程之氮肥使用
2017/09/01
在瓦格寧根大學 「邁向精準農業2.0」之研究計劃中,其中有一項目標是將運用無人機進行農民種植馬鈴薯時氮肥使用量之監測,藉由無人機蒐集之影像精確顯示其分布情形以協助農民更有效率的使用肥料,在荷蘭馬鈴薯農民平均每年每公頃施用約250公斤氮肥,由於荷蘭的天氣差異較大,每年土壤會流失許多的氮含量,其氮肥的施用量是很有精確的數值。 藉由色差顯示其氮需求   在開始種植時,最好能採用三分之二的推薦氮含量進行施用,並在過程中持續觀察農作物生長情況,此時先進的感測器則提供了偵測方法,利用植物反射紅外線、紅光和綠光的程度判斷其氮含量,若植物體內氮含量太低時其顏色變化則較低,最終藉由感測器測量這些差異。   這些測量大致上可經由三種不同方式進行: 使用衛星:低成本之解決方法,但會因天氣限制於多雲的時候而無法使用。 現場手動操作或將感測器安裝於拖拉機:最精準但也是最耗費成本的方法,現階段在實際應用方面仍未被廣泛地使用。 無人機中搭配多光譜相機與感測器:目前最新之應用技術,在這幾年內已有較大的技術突破,未來實際應用性高。 於Akkerweb之應用   瓦赫寧罕大學研究所一名精準農業之研究員表示,經由無人機從馬鈴薯田捕捉之影像會先被轉換為地圖,並透過與Agrifirm公司共同開發的Akkerweb應用程式上傳,最後再向農民回饋應該使用多少氮肥之建議,現階段亦持續對於eBee型無人機之使用方法進行優化,讓其他開發人員在不同無人機類型的感測器系統之下均能適用。【延伸閱讀】透過無人機空拍技術為鯨魚量體重 進行更精準與高效率的偵測   Agrifirm公司研發部技術經理表示在從無人機感測器所蒐集到的結果進行分析後,可協助許多農民瞭解每年土壤狀態以及植物生長情況,以確定是否需要施加額外氮肥,此種方法不僅可更精確地監控氮肥施用狀況外,更能得知目前田間氮肥需求之差異,未來將有助於提升田地作物產量、減少耕作成本以及促進環境友善,雖然目前主要應用標的作物為食用馬鈴薯,但未來在其他重要作物上,如:大麥或小麥之應用是否合適,將會是下一階段研究項目。
日本佳能MJ集團利用攝影相機與AI技術掌握作物採收
2017/08/29
以物聯網(IoT)應用與人工智慧(AI)技術結合所發展的智慧農業已逐漸成為世界趨勢,根據美國調查公司得知2016年智慧農業相關市場規模約有5,800億日圓,預計在2022年將會擴大至兩倍以上,為此日本佳能MJ集團 (Canon Marketing Japan)正積極應用其攝影相機與光學影像解析之技術發展獨特的智慧農業生產模式,以監控作物生長並預測其收穫時間,同時協助解決農業勞動力缺乏與人口老化等問題。   為了提升作物產量和品質,在生長環境建置方面,會利用感測器所蒐集之數據進行分析,如溫度、濕度、二氧化碳濃度和日照量等環境因子,同時結合作物生產資訊管理系統以建立一個作物適合生長的溫室環境,但仍有些訊息如花的數目、葉子大小、莖的長短等資料仍需以目視方式進行人工判斷,顯示現階段IT通訊技術於農業領域之應用仍有其發展空間。   因此本次日本佳能MJ集團將與日本九州大學和農業生產法人ACT草莓農園的共同合作項目中,以草莓為目標作物,藉由本身在生產設影相機與開發光學影像解析技術所累積之豐富研發能量,投入新智慧型農業示範實驗,並藉由其子公司底下之主要研發團隊佳能ITS研發中心所開發之人工智慧深度學習(Deep Learning)技術進行影像分析應用,不僅可算出花和果實數,還能從顏色和形狀預測果實之成熟度,並將成熟度區分為0~4等五個階段,當果實達到成熟度4時即可採收,其預測準確度平均可達到98%。【延伸閱讀】邁向臺灣茶產業3.0之轉型契機   此外,該設施亦能監控作物生長情況,當發現作物生長速度較往年同期間緩慢的時候,可立即進行肥料、溫度、濕度等調整以加速其生長,同時藉由模擬人類大腦之神經網絡(neural network)技術,將溫室內感測器所蒐集數據進行分析預測,讓生產者只要透過智慧型手機即可掌握採收時間與收穫量,且佳能ITS研發中心主任竹中亦指出「對生產者來說經由這樣生產的模式可促使其從批發商獲得更多訂單的機會」,只要能正確掌握出貨時間就能提升其作物產品之競爭力,未來更能配合出貨時間進行作物生產規劃,當價格崩盤時可暫停出貨以穩定市場經營。   在透過本次佳能MJ集團的示範實驗與推動,持續提升此項農業生產模式之技術成熟度與生產預測之精準度,並預計在2018年可順利進入產業化之實際應用,期望透過IT通訊技術積極推動智慧農業之發展,以協助生產者提升其作物生產效率、產量以及競爭力,並因應農業可能面臨之人口老化、勞動力不足、自然災害頻頻發生以及氣候變化等諸多問題尋得解決對策。
農業先進大國荷蘭將邁向新的挑戰—應用宇宙衛星預測作物生產
2017/08/28
荷蘭是僅次於美國的全球第二大農業出口國,根據荷蘭政府提供的數據顯示,2016年農產品相關出口金額達940億歐元,相較2015年900億成長了4%左右,在出口品項方面有85%是畜產品、蔬菜和花卉類,而農業資材產品占整體出口的9.4%(相當於90億歐元),然而相較於美國,荷蘭國土面積僅佔美國4.2%,雖其大多是由填海造陸而成適合農業耕地使用之土地,但在此條件之下,荷蘭仍能成為全球第二大農業出口國是相當驚人的。   荷蘭農業部部長表示「荷蘭農業不僅僅只有酪農產業與鬱金香花卉產業聞名於世,其在農業不同領域相關發展已具有引領歐洲和全球農業之深厚能量」,同時他更進一步指出「藉由農業知識與技術持續發展,將創造兼具高效、健康、安全以及永續的糧食供應系統」。   同時荷蘭政府認為知識與創新技術開發亦是他們推動高效節能溫室相關資材出口的重要支援之一,除了促進國家經濟發展外,同時也對於發展中國家將面臨飢餓與營養不均以及因應極端氣候所帶來糧食供應等問題尋求解決之道。 應用衛星資訊數據發展新的精準農業   荷蘭為推動精準農業發展,預計投入150萬歐元購買衛星資訊,經由研究機關或專業公司分析後,免費提供給國內農民使用,這種新型態農業生產管理模式將結合地理資訊系統(GIS;Geographic Information System)與衛星資訊系統(GPS;Global Positioning System)兩大關鍵核心技術,以進行氣候、土壤、病蟲害等各種不確定環境因素之數據蒐集與分析,最終達到作物精密管理與監控以及提升農業生產效率之目的。 從事數據分析與服務之專業公司   從2000年開始,荷蘭有間公司eleaf藉由分析衛星訊號所獲得之相關環境數據,並將其應用在作物生長和水資源管理方面,同時提供給50個國家以上使用,該公司在農業主要服務項目有 1.作物監測(Crop Monitoring):可在固定時間與區域範圍內,掌握作物生長狀況; 2.灌溉計劃(Irrigation Planner):能精確掌握作物缺水情況,並在需要灌溉時透過MAIL或電話通知,以協助農民在正確的時間、位置進行適量的灌溉; 3.產量預測(Yield prognosis):協助農民進行採收期和作物產量之預測等。   透過這些數據,可一目了然地瞭解哪個地區需要灌水與施肥,減少不必要的成本,除了提升糧食生產力外,更能進行水資源永續管理以達到環境保護之企業使命。【延伸閱讀】聯合國糧農組織利用即時衛星資料進行水資源管理 荷蘭即將發展精準農業計畫   因此,荷蘭在2017年將正式推動國家精準農業試驗場四年計畫(de Nationale Proeftuin Precisie landbouw;NPPL),第一階段將投入政府200萬歐元的補助,以提供農民免費使用這些衛星資訊服務,並額外投入50萬歐元之研究經費,期望後續能帶動醫療、機器人、大數據、資訊及新材料開發等不同領域之創新技術研發。
日本靜岡縣沼津市成立AI與光學測量之農業創新技術研究中心
2017/08/25
日本靜岡縣以沼津市東海大學舊校舍為據點,並投入10億日圓之研發經費,成立一間以農業創新技術為主的戰略研究中心「AOI-PARC」(Agri Open Innovation Practical and Apllied. Research Center),此研究中心成立之宗旨將以應用創新研發能量,整合產業與學術界資源,促進共同研發成果產業化,進而擴散食品與健康等相關產業技術發展。   目前研究中心已引進專研AI技術之慶應義塾大學與光學測量技術之理化學研究所等研究單位,在民間企業方面則已有12間企業進駐共同合作,如:專門製造機器人手臂的IAI公司、能源建設的鈴与商事株式会社以及富士軟片(Fujifilm)等7間具有深厚研發能量之企業,以及其他與諮詢或輔導等相關企業。【延伸閱讀】人工智慧現階段之技術探討及應用   在研究設備方面,為了能依據不同品種與不同產地尋找出最適合之栽種方式,導入可模擬不同環境條件的次世代栽培實驗設備,同時也設置有一台能夠進行高精密測量農作物機能性成份之設備,以作為提升農產品附加價值之用途。   在中心成立當天,靜岡縣川勝平太知事也強調靜岡縣擁有豐富的食材與健康長壽的生活民眾,是最適合作為農業、食品與健康之研究據點,期盼「以世界一流創新技術打造現代農業,持續往攻擊型農業邁進」。   若對 Agri Open Innovation Practical and Apllied. Research Center (AOI-PARC)有興趣者可進一步參閱下述網址:http://www.pref.shizuoka.jp/kikaku/ki-110b/201707/kikaku/index.html
緬甸將透過英國BioCarbon Engineering公司之技術協助,利用無人飛行器進行紅樹林之復育
2017/08/24
紅樹林在因應氣候變遷扮演著至關重要的作用,除了有助於減緩二氧化碳之排放、更能促使沿海區域免受到極端氣候影響,同時提升水產種類多樣性保護效果50%。   緬甸為了恢復因林木過度砍筏及農業土地與水產養殖迅速開發而逐漸減少的紅樹林,過去五年藉由與世界國際基金會(Worldview International Foundation)合作,在伊洛瓦底河域進行了約750公頃的270萬顆紅樹林復育作業,且在這次與英國BioCarbon Engineering公司的合作,則利用其最新的技術藉由無人飛行器進行約250公頃面積之紅樹林復育。   其操作方式必須在種植前先利用無人飛行器進行土地勘查,蒐集地形與土壤狀況等資料數據,並將蒐集之數據進行分析後,以確認種植樹種與位置,最後將包覆生長營養所需的種子莢以足夠的力量射入目標區域的土壤中,其精準度更勝於舊有的空中播種技術。【延伸閱讀】農業製造商推出有效載重可達200公斤的無人機   這項創新技術具有比傳統人工快十倍的種植速度、且種植後存活率高以及所需成本只需人工一半等優勢,目前緬甸在一天內可同時出動六台無人飛行器進行10萬顆種子之種植,並視當地情況以及種植需求逐步進行調整,同時雇用當地居民來進行種子收集與種植以及種植後數木的管理與監測。
藉由植物表現型學發展,將開啟稻米多樣性差異的分析潛力
2017/08/23
為協助國際稻米基因庫解開多樣性的秘密與改善稻米生產,國際稻米研究所在2014年將3,000多種完整的基因組序列釋出,以提供育種人員重新編碼並生產適合未來所需的新品種,約略計算後在這構成遺傳密碼的55,000基因序列中,大約有70%以上之功能仍是處於未知的情況,而目前稻米中的多樣性差異大多是從這些編碼的自然重組所發生,僅要單一個編碼的改變就會影響一個基因的全部功能。 橋接缺口   大多數育種者認為測量表現型是費力、昂貴且技術門檻較高的,目前現行的科學能力尚無法完全瞭解與測量為什麼在田裡會使得這些性狀與特徵出現變化,因此無法在大量的植物數量上進行表現型特徵的細節記錄。為解決此問題,新興的植物表現組學(phenomics)領域結合生物學、工程學、和數據分析以提供一套新技術來克服上述測量的瓶頸,藉由影像成像、感測、光譜和機器人的技術發展進行非侵入式的植物成長過程研究,以尋找到具有價值的表現型性狀。 數位農業   目前,國際稻米研究所正在進行各種感測器與成相儀器的測試,透過善於捕捉顏色照片的RGB相機,進行顏色、形狀、結構資訊等成像分析,並藉由熱成像相機進行近紅外線輻射以檢測人眼無法察覺的部分,並根據其溫度差異來區分範圍內的目標物,這些相機可用來監控植物對環境改變之反應,而不同種類的光譜成像儀也常被用來測量從稻株植冠來的反射光線,以連結化學成分變化與結構組成間的獨特特徵為何。在物理特性探測方面,經由可傳遞的高頻音波、光學感測器或雷射感測器等超音波感測器之使用,將能進行距離、高度和結構等測量,並監測植物架構和生長之情形。每個感測器均是一個有力的工具,當其整合結合後將能創造一個能夠突破表現型測量瓶頸的工具組。 邁向新的挑戰   過去幾年,無人機已在IRRI菲律賓總部進行測試,藉由無人機提供資料數據收集,並從大量且多樣性的稻米中篩選有價值的性狀,而這些無人機亦會搭配有RGB、光譜和熱成像等感測器,在一小時內可測量超過100畝之稻田面積,並兼具有便宜、快速與高度移動等優勢,已成功證實未來可進行全球性的推廣使用,並將所蒐集的資料數據匯集至RICE-全球稻米陣列(RICE–Global Rice Array),建立國際性稻米科學家之社群連結,共同致力於表現型組學之研究。   在田間的大範圍工作時,拖拉牽引機的GPS自動導航功能就能啟動,藉由被架設在24公尺長吊臂的八個感測器套組來偵測四周,並在牽引機工作過程中同時蒐集數據,在以每小時1公里的移動速度下,此系統能蒐集到2,500個葉層資料,且這些經由超音波感測器蒐集來的熱量與光譜資料可表現出其生長分析及監測植物對田地環境的反應。此外藉由設置在雨水收容槽的感測器系統,則可透過水壓調控田間環境進行非破壞性的乾旱生理試驗與偵測。   當需要更多完整的表現型資料分析時,在澳大利亞聯邦科學與工業研究組織的植物表現組學中心所建立的高分辨率平臺將會是主要的工具,能夠進行10,000種植物其葉片表層上的表現型特徵之偵測,透過被覆蓋的顏色、熱能、和光譜的感測器空間數據而產生的3D影像進行性狀剖析與植物生理反應等分析,並提供科學家創新的技術來進行複雜性狀的測量與資料分析。【延伸閱讀】透過受訓犬隻檢測柑橘病害的應用研究 通往未來的窗口   表現型分析之技術仍處於發展的階段,各種新興的技術被開發用來測試其是否為實際可應用之工具,其中IRRI則在這些創新關鍵技術開發與應用扮演著重要的角色,藉由資源的投入以提升表現型特徵性狀分析的數量與效率以及專業技術,協助科學家和育種人員解開稻米基因多樣性的技術,以推動稻米新品種的選育與稻米生產的改善。
聯合國農業機構開始國家層面的行動:處理土壤汙染的新開拓領域
2017/08/18
六月在糧食與農業組織(FAO) 羅馬總部舉行的第五屆全球土壤夥伴關係全球大會(GSP),本次受眾矚目的討論關鍵議題為「土壤污染」,並在會議後大會通過了三項與促進信息交流的新倡議:1.全球土壤資訊系統、2.全球土壤實驗室網絡,以及3.開辦國際黑土網絡,前二項目標將會是以促進各國間之協調與標準化的測量為主,而第三項則是提升世界對於這些高碳含量之肥沃農業土壤的知識。   根據聯合國各農業機構表示,氮和金屬如鉛和汞,會藉由污染土壤與損害植物等方式,進而造成糧食安全之風險,使得農田土地受損,而糧農組織土壤官員暨GSP秘書長亦指出,土壤污染是現今一項新興的問題,但由於形成原因及形式多樣,未來可經由減少知識差距和促進永續土壤管理之方法以加強全球合作並建立可靠的科學證據,同時糧農組織亦強調,過量的氮和微量金屬,如砷,鎘,鉛和汞等會損害植物的新陳代謝,削減農作物生產力,最終導致可耕地縮減,當其進入食物鏈後,這些污染物也將對糧食安全,水資源,農村生計以及人類健康造成威脅。 監控土壤污染   「土壤污染」一詞常是指不應存在或濃度高於正常值之化學物質存在於土壤之中,這將造成一個隱藏的風險,因為它比起一些土壤退化之過程(如侵蝕)更難觀察,像是化肥、除草劑和殺蟲劑等使用,或者是動物糞肥中所含的抗生素均是其主要的可能污染物,這也是由於人類所用的化學配方藥劑變化迅速,造成了對土壤的特殊挑戰,因此GSP在2018年4月將召開全球土壤污染物與污染防治座談會,並對於未來將支持推動的土壤數據網絡共享訊息與協調管理標準化以減輕土壤負擔之議題做進一步的討論。【延伸閱讀】小農民也能為氣候調適研究盡一份心力 黑土   新的「黑土國際網絡」將定義為土壤中至少含有25公分的腐殖質,且土壤有機碳含量高於2%,若按照這個定義計算,目前全世界此種土壤約有9.16億公頃,其佔無冰地球表面的7%,這個新建置的「國際黑土網絡系統」未來將藉由製作分析報告、提供知識分享以及技術合作服務平臺來提升其黑土之養護和長期生產力。
今日的農作物品種選育,需因應未來不確定的氣候提前做準備
2017/08/14
多變的極端氣候為加州農作物種植帶來極大的挑戰,同時加州大學戴維斯分校(UC Davis)植物栽培中心主任亦表示:「由於我們的氣候型態正在快速改變,並影響了土壤組成、雜草、病害和蟲害等所有事情,為因應這情況通常需要花上十年來選育一個新的農作物品種,因此我們必須非常快速地推斷未來將會帶來什麼情況。」   而加大戴維斯分校種籽生物科技中心研究主任表示:「昆蟲及其傳播的病毒正威脅著加州和其他地區的蔬菜作物,以蚜蟲來說其大約四到六周的熱量即可產生下一代的蚜蟲並破壞整個農作物,也由於區域性的氣候極端變動比起長期的氣候變化帶給育種人員更大的挑戰,氣候溫度越變越熱以及更長的乾旱與水患發生等將會是我們未來難以掌握的部分。」   因此加州大學戴維斯分校的育種人員和工程師們,正藉由先進的基因遺傳策略、開發機器人感測器來測量植物表現的性狀及訓練下一代植物育種人員,以協助農作物逐步跟上不斷變化的氣候。 時間推移演化   加大戴維斯分校之育種人員亦幫助選育加州各種環境裡常年生長的將近400種水果、蔬菜、堅果、穀物和觀賞植物之新品種或多樣化種類的發展,以創造一個具優勢的品種,而研究人員將所需具有之植物性狀的植物進行雜交,並在多樣化的衍生世代中選擇的最好的後代,同時也因為DNA定序技術的迅速進步以及具有能夠分析大量基因遺傳數據的電腦設備,使得育種已變得比以往更加快速且聰明。   一些植物性狀像是風味和尺寸,是由許多共同作用的基因所決定的,其他的特性,如對病害的抵抗,則可能是受某個單一基因調節控制,研究員現在可以在分子階段即會識別其基因會影響哪些性狀,比起之前等待植物成熟後才出現的表現性狀還來得快速,因此育種人員可以在種子階段或植物幼苗DNA定序的方式選擇植物,以縮短開發可因應病害之抵抗農作物的選育時間。 下個新領域:快速表現型   基因體學只是加速育種工作的其中一個部分,育種人員仍是需要知道其表現形態,雖然分子工具幫助找到了一些與表現性狀相關的基因,但在表現型分析與特徵測量方面仍是育種發展過程中的瓶頸,與之相對應的解決方式則是以新的智慧型機器與感測器為基礎的技術,使得植物和土地之大量資料數字能夠自動化地進行測量並蒐集,因此加大戴維斯分校一名生物與農業工程系的教授發展了一套具有高科技相機之快速監測表現型系統,以創建每株植物在田間生長的3D虛擬模型,並能夠測量數種關鍵的構成要素,像是植物結構和體積、葉子面積和數量以及葉面溫度,這會幫助育種人員判斷其生長型態和植物是否處於高溫或水分的緊迫壓力之下,此拖曳拉動系統現行可達到每秒測量三株植物或每小時10,800株植物。【延伸閱讀】農業的轉變可遏制氣候變化   感測器技術也可以提供大局觀的數據,讓育種人員可以在一個不確定的未來情況下選育所需且能夠茁壯生長之農作物,為此需要進行表現型與基因型之分析與研究,並且藉由農作物管理策略將其結合在一起,以找出新品種之最佳化種植條件,使得我們現今能將新的品種作物種值得更有效率且迅速,同時促使其生產量能在未來的生產環境中表現良好。
英國土壤濕度感測器突破性進展,為智慧型灌溉鋪路
2017/08/10
英國布里斯托的業者SoilSense正在研發可以在幾分鐘內提供一片土地水分情況細節地圖的空氣土壤溼度感測器。SoilSense的共同創辦人之一,是布里斯托大學一名教授,善於天線接受器設計和微波科技等研究,另一名遙控感測的專家,則是藉由改良覺體內腫瘤之檢測方法,兩者共同研發了水份感測器的概念。   這專利的感測器具有獨特特徵和算法能夠使用電磁脈衝波反應特性來覺察水分。它可以區別葉子中的涵蓋水分和土壤中的水分,所以能夠提供一個直接且不會被覆蓋作物影響之土壤溼度測量,同時SoilSense監控器能被設置在一個遙控無人機上,可迅速在幾分鐘內提供一個準確的全土地的水分地圖(MoistrueMap)影像,這在水分感測上是一個變革,具有提供監控實際水分需求的智慧型灌溉控制之發展潛力。【延伸閱讀】利用紅外光變化偵測二氧化碳之感測器應用   傳統的水分濕度是以設置在田地間隔間的感測器進行測量,這不僅耗時且僅能提供一個田地的單一定點之準確測量,其為了涵蓋更大的田地,可能需要安裝十或百個感測器,但這是不切實際的,而另一種替代方法則是使用空氣感測器,但目前之技術是採用被動的輻射線測定,在不良的天氣條件下其很敏感且容易有被干擾的傾向,因此智慧型水分監控與使用或許將會是世界上很多地區且包含乾燥的東英格蘭不可或缺的關鍵技術,未來若能夠實際應用並依據土壤含水量進行用水量調整將會是個重要的突破發展。
日本農林水產省與經濟產業省跨部會合作科技技術創新
2017/08/08
日前由日本農林水產省和經濟產業省跨部會共同召開之「運用生物資源,人工智慧(AI)及物聯網(IoT)創新研究開發之整合」會議中,其對於日本內閣政府在2016年公布五年期之「第5期科學技術基本計畫」(2016-2020年)中所提出「社會5.0」(society5.0)內容做了更進一步的說明。   所謂「社會5.0」意旨人類社會發展歷程上,從狩獵社會、農耕社會、工業化社會、資訊化社會,以及未來將進入高度應用資通訊(ICT)與自動化等先端技術支援生活和產業環境,並結合大數據分析和AI(人工智慧)之成為高密度網絡聯結社會,不僅能帶動經濟發展,同時可以解決社會各項需求與課題。會議主講者久間先生(內閣府綜合科學技術暨創新議員)特別指出此向改變不單影響產業界甚至會改變整個社會發展。   以農業為例,在藉由先端技術與數據相互結合的概念下,可將田間用地重新整合,建立一套綜合管理系統或生產預測系統,在環境面結合自動化農機械設備和水資源管理系統之運用,使每人平均可耕地面積達到倍增之效益,進而建構具備國際競爭力之高生產力系統。   此外,在運用大數據對其所蒐集之溫度和降水量等資料分析後,將可進行不同產地間之生產預測,同時建立一套可整合不同產地間的資訊共享系統,以提供需求者掌握出貨期和出貨量等資訊,達到農產品調節與穩定之供應。【延伸閱讀】「e-連結」先導型計畫啟動美國農村高速寬頻建設   在這場跨部會聯合會議當中,也針對「強化種苗開發促進國際競爭力」、「建立從種苗開發之食品價值鏈」等目標進行說明,作為「次世代生物農業戰略」(暫定名稱)之未來方向。
日本自動駕駛耕耘機之開發
2017/08/03
秧作業必須要有駕駛員與插秧者雙人作業得以施行,而新開發的耕耘機則是單人即可輕鬆地完成高精準度插秧作業,速度更是以往耕耘機器人的兩倍,同時也已接近實際應用階段。此技術不限於耕耘機,未來可望能廣泛應用在所有自動駕駛車。 研發內容 1. 以市售的乘坐式耕耘機(8聯刀)為基礎,在機體前裝上RTK-GNSS天線和接收器,便能以數公分的精度掌握機體位置。此外,併設三軸陀螺儀,可測量機體行徑方向、傾斜角度,調整成更精準的位置資訊。 2. 以衛星定位訊號獲取機體位置,利用ECU控制方向盤與操舵機結合處的操舵馬達,可讓機械沿著預定路徑行走,並自動操舵。特別是在旋轉時,可藉由獨家開發的自動操舵系統,可以平順且迅速地定位到下一個前進路線。 3. 一開始由人工操作的方式,在田間最外周的3邊執行作業,識別田間的形狀,擬出自動行走路徑,連在非正方形或非長方形等不規則田地,也可完成行駛路線之設定。 4. 獨家開發的自動操舵系統不管任何人都可以操作使用,即使在最高速度(基本為1.86m/s)下進行耕耘作業,其精確度也可達到熟練者操作水準。此外可避免人為過度操作產生疲勞問題,不儘可維持高精準度,也能提高作業效率。 5. 利用攜帶式吊墜遙控器,可遠端操控緊急停止作業,甚至可在機械副近即可操作。此外,耕耘機倘若有一定時間無法與遙控器通訊,或者無法接收衛星定位的情況下,立即啟動中止作業的安全機能。【延伸閱讀】緬甸將透過英國BioCarbon Engineering公司之技術協助,利用無人飛行器進行紅樹林之復育 未來規劃與展望   此開發機種,在水稻種植作業方面,可同時達到大幅度節省勞力以及確保其安全性兩者功效,期望未來此新作業技術可早期達到實際應用。此外,於2017年7月6日舉辦現場展示會,與各方相關人士進行意見交換,詳細請參閱附件說明。另外同時展示已公開可正行插秧的電動插秧機。
闡明向日葵基因組加速開花期與油量生產
2017/08/02
向日葵為全球前五大油籽作物之一,能適應各種種植環境條件,同時在主要作物中,向日葵可利用最少的栽種成本投入,並維持有一定之生產產量,同時栽種過程中具有節約水資源等優勢。但一直以來研究者不容易完成向日葵基因組鑑定,原因來自於向日葵基因組有別於其他植物,它是由高度相似的相關序列所組成的。【延伸閱讀】全基因組定序揭開蘋果起源演化之旅   因此法國農業研究院(INRA)的研究團隊自2016年6月與國際向日葵基因協會聯盟共同合作研究(The International sunflower genome consortium),致力於從這些複雜且大量基因中闡明向日葵基因體差異,從中設法確定特殊表達的基因,掌握開花時間,並透過瞭解這些基因組有助於加快向日葵之育種。   經由一年的時間,該研究團隊已經深入分析上百組與調控開花相關之基因組,並精確掌握關鍵基因組,這些初步研究成果同時亦於2017年5月發表於自然(Nature)網站,期望能利用遺傳多樣性有助於向日葵之抗逆境和產油量,以因應全球面臨氣候變遷之挑戰。
美國投入控制環境的表現型設備於植物科學
2017/07/31
美國普度大學新的「控制環境表現型設施(Controlled Environment Phenotyping Facility)」將在2018年完成,並提供研究人員在可控制的條件下進行實驗。   此項最先進的植物成像設施實驗室佔地約7,300平方英尺,同時將增進普度大學在植物改良之研究與分析方面的技術能量強化,並且推動「普度前進倡議(Purdue Moves initiative)」來拓展植物科學之相關研究。該設施亦將會容納兩個大型的栽培生長室,並連結至一連串的自動化影像成像站,使得此設施在未來應用上是有可能連接至附近不同的校園溫室或栽種生長場地以取得其植物影像,同時這個設施也讓研究人員能夠精準地控制各項實驗的變數,使得田間環境中很難重覆進行的均一生長栽培條件成為可能。   在這最高可到4公尺的設施空間中,其每小時內最多能偵測並顯示277株植物,同時搭配使用最快速的攝影相機以達到最佳作業效率之目的,未來若能連結相關的設施,這個表現型設施將可能會擁有6萬平方英尺的栽種生長空間,而這個高水準的研發設備能量除了普度大學外尚無法在其它地方看到。   設施內所有的裝置與設備將會在2017年8月開始到達普度大學,包含有偵測植物發展與色彩分析所需的高分辨率之快速RGB成像系統,以及可用於進行細部植物組織光譜分析之可見光範圍的近紅外線高光譜成像系統,並有一個非動力的螢光感測器,以及可進行植物光合表現分析的葉綠素螢光成像感測器。【延伸閱讀】新的應用程式開發可以幫助作物灌溉管理 額外參考資料 (https://www.helsinki.fi/en/infrastructures/national-plant-phenotyping)   在芬蘭赫爾辛基大學亦有類似的植物表現型設施,在其「國家植物表現型基礎設施(National Plant Phenotyping Infrastructure, NaPPI)」中包含有植物栽種溫室和光譜實驗室,NaPPI藉由基因體學應用以及非侵入式的高通量表現型分析,最終達到高精準度的植物代謝與生理化學之影像。
歷史性種子樣本監測基因變化性
2017/07/26
「國際生物多樣性中心(Bioversity International)」是一個全球農業生物多樣性研究發展中心,致力在農業生物多樣性能滋養人們並讓地球永續。最近,此中心評估了約旦野生作物基因伴隨時間演變之價值,將世界上歷史性的220,000種地方品種作物和野生大麥品種作物(CWR)相關的樣本數據(1975~2012年)作數位化。這個研究將最近獲得的植物樣本與原在種子銀行中含有歷史種子材料部分作比較(種子銀行在同源地點蒐集了31年的資料)。這個分析幫助了研究學者觀察物種如何回應「氣候和土地利用變遷」、「農業集約化」和其他「隨時間演變而來的威脅」。   這些深富價值的資訊於2014年放在國際生物多樣性中心網站的「蒐集數據任務(Collecting Missions Database)」中,目前也讓更多的人能在最大的生物多樣性數據庫:「全球生物多樣性資訊設施(GBIF: Global Biodiversity Information Facility)」上取得這些資料。GBIF是個開放性的數據建構設施,用來幫助機構根據基本規格條件印出他們的數據,並提供單一的入口點能進入數以百萬計的珍貴紀錄。   但建構這些資料是為了什麼,且為什麼提升取得的方式那麼重要,在國際生物多樣性中心和其夥伴在約旦所執行的一項研究顯示,「蒐集數據任務」能夠被利用於比較重新在基因銀行裡得到歷史性種子材料和最近在同地收集的材料,以獲得伴隨時間演化的基因遺傳變異。   約旦這個團隊在2012年開始重新蒐集同一種源地的野生大麥樣本,(此地已蒐集了過去31年的資料)。野生作物相關的親戚植物種苗變得更加重要,因為它們是栽培作物相關的基因連結,且在它們(所屬)的大自然環境裡逐步進化,發展了適應乾旱忍耐力或抵抗害蟲的特性。   在過去蒐集的31年間,約旦的氣候明顯的變得更乾熱更乾。農業變得集約化,而且牲畜的數量幾乎兩倍化。從原始種子蒐集的試驗點上蒐集到的植物成長資料已被儲存在瑞典的北歐基因資源中心(NordGen)的基因銀行裡,被用來相比從2012年重新蒐集到的種子的植物成長。這個分析考量了型態學和基因特徵,來了解物種如何回應氣候變遷、土地使用變遷、農業集約化和其他伴隨時間而來的威脅(Thormann et al., 2016)。   野生大麥植物表現出了一個針對環境改變更複雜且複合的回應。它們的基因多樣性提升,但數量顯示出與31年來彼此間的差異性不大。這就像是現今,伴隨著增加的農業和畜群的活動,結果是種子在這個國家移動變得很容易。這個相同的現象已被同組研究群所做的一項約旦地方品種大麥的平行研究報導出來(Thormann et al., 2017)。種子流和種子管理實行伴隨時間影響了該國家多樣性的散佈。幾例來說,野生大麥植物具有較長硬毛的附屬物,它會沾上衣服和鞋子,及動物的毛皮,這意味著他們(硬毛)相當容易移動。【延伸閱讀】聯合國農業機構開始國家層面的行動:處理土壤汙染的新開拓領域   下一個階段會帶出其他國家野生大麥相似的研究來比較結果。更進一步,為了帶出相似的研究,這些蒐集到的數據能夠讓使用者來追蹤和重新蒐集其他品種。這個工作帶出了與不同國家機構(美國、德國、約旦)之間的合作,如德國聯邦基因銀行(The German Federal Genebank IPK)的合作。
關於食用動物抗生素之替代品使用與研究仍需有更多有效數據及資料
2017/07/21
由於人類和食用動物使用抗生素的情況持續增加,導致抗生素抗藥性的問題逐漸受到重視,農民亦面臨著如何在減少與謹慎地使用抗生素之下,仍維持提高動物健康之挑戰,而根據新的美國食品和藥物管理局(FDA)1月1日生效之規定,農民不能再長期使用醫學上重要的抗生素以促進食用動物生長,同時需要有處方的同意才能繼續使用這些抗生素藥物進行疾病預防,以監控食用動物抗生素之使用,並達到其減少使用之目標。雖然目前已有許多抗生素替代產品幫助農民與獸醫減少抗生素之使用,但實際上其最終是否能夠有效地使用與應用於大型農場仍存有一些問題需待解決。   從皮尤慈善信托基金會(Pew Charitable Trusts)之研究報告指出,目前抗生素替代品最為廣泛使用的項目有疫苗、益生菌(probiotics)和益生質(prebiotics)等,而這些抗生素替代品儘管在促進生長與預防疾病方面有顯著的功效,但其功效在動物群體間往往會有不同的效果差異,因此這些產品在實際工作環境使用上仍是缺乏相關的關鍵數據。   此外由於消費者以及大型禽肉品加工業者在未施用抗生素家禽肉品之需求日益增多,使得越來越多的在家禽養殖業者改用抗生素替代品,而明尼蘇達大學獸醫醫學教授Tim Johnson也指出,除了疫苗外,目前市面上最常使用的方式是藉由將益生菌(probiotics)和益生質(prebiotics)添加到飼料和水當中,以建立腸道有益微生物之移植(colonization)並幫助腸道中有益微生物抵抗有害細菌之入侵。   然在肉牛和乳製品行業之推動也逐漸開始使用益生菌(probiotics),以提高畜產生產力與疾病預防,而明尼蘇達大學醫學教授Tim Johnson亦提到另一種常使用的方式且則是在飼料中添加免疫調節劑,以誘發宿主免疫系統的反應,其免疫調節劑之目的主要是藉由增強免疫系統,使其在進行疫苗接種後,從而對抗原產生更強大的免疫反應以協助免疫系統因應疾病之挑戰。   同時在皮尤慈善信托基金會(Pew Charitable Trusts)報告亦提到,在對於豬隻的生長促進和疾病預防方面,雖然目前已有數種不同的抗生素替代產品,其包括有益生菌,飼料酶,抗菌肽以及有機酸等,但其中一些產品的基礎作用機制仍是不明需要投入更多相關的研究,對於這些缺乏一致性之多項抗生素替代品應如何策略性的組合使用,以真正達到減少抗生素使用之目標才是未來需要重視的議題。【延伸閱讀】乳牛養殖價值計算,增進選種效率   此外,公共衛生和動物醫學顧問DVM Gail Hansen亦表示,雖然目前可以看到不少關於這些抗生素替代品在不同動物物種中使用之案例,但其作用機制仍需要更多研究投入,特別是在他與長期使用這些抗生素替代品的農民交流過後發現,若是在缺乏有效數據之驗證下就過於推動此類抗生素替代品,未來將可能會降低農民對於此類產品之接受度與信認,使其未來在推廣上更為困難。

網站導覽
活動資訊
訂閱RSS
電子報訂閱