MENU
主題專區
要進行溫室氣體減量,首先需瞭解排放情形,包含排放源、排放係數,透過精準掌握農產業碳排資訊,針對熱點投入資源進行滅量工作,建立低碳的耕作與養殖模式,推動農機電動化與設施設設能效提升,建構低碳農業。
全部主題
研究牛瘤胃之微生物能幫助提升肉類與乳製品產量
2018/03/22
瘤胃(rumen)是牛、羊等反芻動物四個胃室中的第一個胃,內部含有豐富且複雜的微生物生態,能夠幫助分解食物,因此維持瘤胃裡的微生物健康與正常醱酵對維持動物營養非常重要。然而瘤胃中的微生物相可能因成分、來源或環境等因素受到變動,故研究此微生物相的變化有助於了解反芻動物之生理情形。憑藉著分子生物學與基因體學的進步,針對微生物的相關研究也越來越多,因此於2018年發表在Nature Communications期刊的一項研究中,英國愛丁堡大學羅斯林研究所─Mick Watson 團隊與蘇格蘭農村學院─Rainer Roehe團隊共同合作,利用總體基因體學(Metagenomics)和Hi-C based proximity-guided assembly (Hi-C based PGA)進行43隻蘇格蘭牛(Scottish cattle)之瘤胃中微生物的DNA測序與組裝,接著交叉比對基因資料庫後,鑑定出913種微生物,且大部分的微生物屬於未曾發現的新物種。【延伸閱讀】科學家已開發出快速檢測病毒之可攜帶設備   研究團隊也表示,這些新發現的微生物能將植物轉化成動物所需的營養與能量,最後成為動物身上的肌肉蛋白(muscle protein)及分泌出的牛乳;未來不僅能協助研究提升肌肉或乳製品產量,增進糧食安全,也有極大的潛力應用於生物燃料(biofuel)與生物技術產業中。
區塊鏈如何加強鮪魚供應鏈的追蹤性以打擊非法捕魚
2018/03/21
區塊鏈技術是比特幣中的重要概念,能用來記錄所有的交易過程,其本質上為群體共享的數據庫,而群體中的人皆可察看與更新,但歷史紀錄則無法被更改。此技術使用於供應鏈中能提高其透明度,為促進全球漁業發展,區塊鏈技術將被用於改善鮪魚產業的可追溯性,以阻止太平洋周邊的非法捕魚活動。   世界自然基金會(World Wide Fund for Nature)、美國以太坊創始公司ConsenSys、斐濟技術初創企業TraSeable和鮪魚捕撈和加工公司Sea Quest合作,將於太平洋區域展開區塊鏈的試驗項目,預計利用區塊鏈技術追蹤鮪魚從捕撈到餐桌上的歷程,其目的是為了幫助禁止在鮪魚產業中非法捕魚和侵犯人權行為。【延伸閱讀】智慧手機與區塊鏈技術應用為打擊食品詐欺的新方法   相關追蹤在鮪魚被捕穫後立即開始,一旦捕到魚就在漁船放上可重複使用的RFID標籤(無線射頻識別,Radio Frequency Identification;RFID),漁船、碼頭和加工廠的相關裝置能將各段作業訊息上傳。一旦魚獲受到加工處理,RFID標籤就換成較便宜的QR Code附到產品包裝上。QR Code中包含相關的區塊鏈記錄及原始的RFID標籤資料,減少整體過程中的標籤成本,使得捕魚產業中的中小型經營者也可參與其中。消費者只要運用智慧型裝置掃描產品上的代碼就能得知產品供應鏈上的所有資訊,雖然此次為首次將區塊鏈技術運用在太平洋地區的捕撈漁業,但Provenence公司和國際桿線協會(International Pole and Line Foundation;IPNLF)已有魚獲從印尼送到英國的成功案例,且Provenance還致力於使用區塊鏈追蹤棉花、時裝、咖啡和有機農產品等其他品項。   目前區塊鏈技術已開始改變既有的產品業務,為消費者提供更多採購決定的基礎資訊;且搭配供應鏈的高度透明性,將能有效消除非法捕撈活動與強化現有業者的管理方式。
國際水稻研究所推出監控及預防水稻白葉枯病爆發的工具
2018/03/20
四年多以來,Oliva博士及其團隊致力於破譯Xanthomonas oryzae pv. oryzae的遺傳密碼,此細菌能夠引起水稻白葉枯病(Bacterial leaf blight)的發生。水稻白葉枯病是世界上影響水稻的重大疾病之一,嚴重時可造成部分易感性品種70%的產量損失。雖然世界各地的水稻種植區都可能發生由X. oryzae引起的白葉枯病,但致病菌株的遺傳特性也因地而異,往往只能在大量爆發後才可對症下藥;因此長期以來,農民與科學家對於此種水稻病害的防治效果不彰。   以往的病害鑑定需要耗費大量的人力與時間,從現場的病徵觀察、多區採集,再到實驗室分離病原與後續分析,才能準確的計算病原數量與危害程度,通常需要花費數月甚至一年才能確定某地區的流行菌株。若能快速了解整個國內的病原群,那麼國內的水稻育種計劃可以針對這些毒性株特性進行篩選,以減少農民的種植風險。   國際水稻研究所(International Rice Research Institute,IRRI)開發了一種名為PathoTracer的革命性工具,只要將少許的葉片樣本到認證實驗室進行基因檢測,檢測結果由IRRI進行分析,如此便能將原本耗時一年的工作減少成兩週,農民在種植季節結束之前就能知道作物是否得病與病原資訊,並且獲得抗性品種之相關建議。由於PathoTracer可以同時計算數千個樣本,故可用於大面積偵測,也可搭配菲律賓水稻資訊系統(Philippine Rice Information System,PRIM)或病蟲害風險識別與管理(Pest and Disease Risk Identification and Management,PRIME),以支持國家或區域作物的健康管理。【延伸閱讀】日本認定符合技術與安全規範基因編輯食品,將可採用既有之食品法規進行規範與販售   此外,IRRI有興趣將此基因檢測工具擴大到稻熱病與其他可能感染稻米的其他病原。目前PathoTracer已經在亞洲其他地區進行測試,國際水稻研究所預計於2018年初推行,預期PathoTracer將對全世界的水稻產生重大影響。
歐洲動物保護組織呼籲提高養殖雞標準
2018/03/18
包含皇家防止虐待動物協會(Royal Society for the Prevention of Cruelty to Animals;RSPCA等大型的動物福利與保護相關組織要求為養殖雞提供更好的福利標準,以解決肉類密集且大規模生產時面臨非人道條件的問題。RSPCA的農場動物福利專家Sophie Elwes表示:儘管雞肉需求量迅速增長,但大部分養殖動物的福利卻沒有改善,快速而集約化的養殖條件可能導致動物健康受到損害,如心血管疾病或部分殘疾等。   雞的肉類產量比其他任何養殖動物更高,英國每年就宰殺9.5億隻,全世界每年約屠宰500億隻。而目前預估這些數字將迅速增加,到2020年成為世界上最大的肉類來源。以速食店為例,連鎖餐廳麥當勞(McDonald's)本來以販售牛肉相關產品為主,但現在銷售的雞肉比牛肉多,且預計到2020年的採購量將是現今的10倍以上。   名廚Oliver和Fearnley-Whittingstal強調基本的房舍、空間和環境等因素與養殖雞福利有重要關聯;但RSPCA認為,為加快販售時間而採用快速成長的性狀選拔可能對養殖雞的福利影響更大,因為消費者已養成了快速取得廉價雞肉的習慣,改變了傳統養雞產業的面貌。另外RSPCA最近的民意調查顯示,購買雞肉的10人中約有8人(86%)希望市場能夠確保銷售的所有雞肉皆符合高福利標準。新的福利標準規定養殖區域需要禁止屠宰期間非人道作業、有機繁養殖與良好的活動空間等條件,而目前英國只有被標記為RSPCA Assured的產品符合所有生產的新標準。【延伸閱讀】世界動物衛生組織最新的研究報告顯示全球已逐漸落實動物抗菌劑的用藥安全及監控管制   Marks & Spencer是英國最具代表性的連鎖商店之一,其中農業主管Steve McLean表示,動物福利是公司業務的核心之一,且企業具有社會責任去推動新的標準。因此將於1月份開始一系列的試驗,以測試動物福利新標準於商業化農業供應鏈中的工作模式。可持續餐飲協會(Sustainable Restaurant Association)執行長Andrew Stephen表示未來將努力加快更高標準飼養禽肉的採購和服務。
Smart Ag發布第一款無人駕駛機械平台
2018/03/14
美國多數農場採行大面積、粗放式農業,過大的場域容易造成管理不便,因此多用大型機械進行播種、施肥、除草、收穫等農業行為;而早期的大型機械需要駕駛在機器上控制,駕駛技術與安全性備受考驗。   比起自行培養專業技術人員,加強自動化可能是更快的選擇。因此美國愛荷華州技術公司Smart Ag開發了革命性的AutoCart軟體,為農業自動化打開了新的大門。AutoCart配合SmartHP可作為一組即插即用的系統,可以使現有的農場機械自動化,並兼容任何品牌或組合。 聯合作業人員需在現場設置各段卸載位置、調整穀物車與收割機的速度和方向,透過應用程式載入後就能精確同步化兩種機器的作業,使得農民可以一人完成傳統需要兩名熟練作業員的工作。【延伸閱讀】日本自動駕駛耕耘機之開發   此種使用現有機器且配合無人駕駛的技術突破,能夠解決收穫其勞動力短缺之問題;此外,農民從「操作者」轉化成為「監控者」角色,並且更加提高工作效率與能力。最近Smart Ag在玉米和大豆收穫期間於中西部農場完成AutoCart綜合測試,此技術可能透過提高生產力、安全性與利潤,為大型農場的作物生產帶來重大改變。   該公司認為,農業不應該再由設備決定生產利潤高低,而應該提供多種技術與工具供農民選擇,搭配正確的知識與技術,才能有效提高營運能力。
歐盟推動大數據技術整合幫助提升生物經濟價值
2018/03/09
由歐盟Horizon 2020 programme研究與創新計畫出資的其中一個子項目,稱為Data-Driven Bioeconomy(DataBio),為芬蘭VTT技術研究中心(VTT Technical Research Centre of Finland)所負責。DataBio的主要目標是研究、分析與展示從環境收集的大量數據資料,並將其應用於現有的農業、林業與養殖業中以減少資源浪費,並保護環境的永續性。   DataBio的參與者來自17個國家,包含比利時、捷克、德國、西班牙、挪威、波蘭、意大利、希臘、以色列、荷蘭、丹麥、瑞士、英國,愛沙尼亞、法國和羅馬尼亞。從2017年開始進行為期三年的計畫,預計在26個試驗點開發測試更優良的收集、分析與使用程式,而相關的大數據技術成果能再創新的商機。   在以精準農業為目標的試驗點中,根據當地氣象站、衛星和放在各處的感測器進行田間測量以收集數據,數據分析後可提供做為作物生長管理的依據,以便遠端控制農業機械進行播種、施肥和其他操作;而漁業的部分則聚焦在熱帶鮪魚與北大西洋的小型遠洋漁業,希望幫助節省成本及提高漁船效能。除了有前端的技術開發,後方用戶端、生物經濟和技術研究機構以及其他專家也將持續合作,整合出最適合市場使用的大數據計算與觀測方法的相關技術、工具與服務,將DataBio化為世界上最先進的大數據平臺。【延伸閱讀】EuroTier展示會的動物養殖數據技術應用案例   此計畫總預算為1,620萬歐元,預期成就包括:提升生物經濟的生產力、擴張大數據技術提供商在生物經濟相關領域的市場、提高大數據技術在生物經濟中的使用、密切與BDVA(Big Data Value Association)合作、連結此計畫與其他大數據相關的活動等。
高營養濃度的飲食會影響牛的肝臟健康
2018/03/07
完全混合日糧(Total Mixed Ration, TMR)是一種經由營養計算後,將精料(concentrates)、粗料(forages)、營養補充物(nutritional supplements)或其他農副產物混合後,讓畜牧動物所攝取的每一口都是營養平衡的飲食。在泌乳初期,乳牛的營養需求增加,為了補充營養,農民常將富含精料的食物餵給動物。然而最近的研究結果表明,此種做法可能會對乳牛的健康狀況產生負面影響,導致瘤胃和腸道pH值下降,造成瘤胃和腸道微生物菌相的失衡,釋放大量內毒素,影響動物健康。【延伸閱讀】研究人員正在進行乳腺炎測試的相關研究,可望為牛奶生產商節省數百萬美元   雖然肝臟是解毒的主要器官,但過往研究對在餵養富含精料的飲食過程中,動物體內的解毒狀況了解不多。因此該研究的目的是探討高濃度飲食對泌乳期乳牛血液、瘤胃pH值、糞便內毒素濃度和肝功能的影響。   研究的結果表明,高營養濃度的飲食可能會對乳牛產生不良影響,包括: 瘤胃pH值降至6.2 糞便內毒素濃度增加了5倍 在第4週Aspartate Transaminase(AST)、Glutamate dehydrogenase(GLDH)和Gamma glutamyl transferase(GTT)等酵素活性增加   雖然功能正常的肝臟可以負擔平時產生的內毒素,但若是因為飲食使得消化道pH值降低且內毒素大量增加時就有可能損害肝臟健康並誘導發炎反應。所以農民應檢視飼料中的精料量,並且應考慮放入減少內毒素的飼料添加劑。   此研究為奧地利的百奧明公司研究中心(BIOMIN Research Center)與University of Veterinary Medicine Vienna合作,發表於德國的巴伐利亞動物營養學會(Bayerische Arbeitsgemeinschaft Tierernährung或BAT)的第55次最佳可行性技術協商會議上,並在海報比賽中獲得一等獎。
北方玉米葉枯病的毒性基因標定與遺傳特性
2018/03/05
北方玉米葉枯病(Northern corn leaf blight)為玉米的真菌性病害之一,其病原為Setosphaeria turcica,是子囊菌的一種,感染後造成玉米葉片上具有綠灰色壞死病斑,未及時處理會使得產量下降。雖然先前的研究已找出玉米中的抗性基因,但真菌也會持續演化以突破玉米的防禦,故需了解S. turcica和玉米基因間的相互作用與長久以來遺傳的變化,以幫助辨別致病菌株與生產具穩定抗性的玉米品種。   目前已知Ht1、Ht2、Ht3和HtN等基因能協助玉米抵抗不同品系的北方玉米葉枯病,但確切的機制與基因位置尚未明瞭。為研究毒性與其他性狀發育間的遺傳關聯,伊利諾大學(University of Illinois)的植物病理學助理教授Santiago Mideros及其團隊繪製了S. turcica的基因圖譜,並使用不同性狀的玉米雜交,分離了221個子代,透過定序與分析後列出了2078個單核苷酸多態性標誌(single-nucleotide polymorphism markers);透過觀察病原與植株間的親和性與基因變化找出了AVRHt1和AVRHt2的位置,以及顯示了真菌毒性與菌絲生長間的關係。此外還確定了基因分子標記,未來可針對田間環境取樣,找出田間環境中的致病菌株,或是幫助培養具有抗性的玉米品種。【延伸閱讀】對抗小麥莖銹病的新發現   相關研究發表在Phytopathology
阿里巴巴挑戰開發人工智能養豬技術
2018/02/28
中國的大規模養豬產業需要大量人力資源的投入,為顧及防疫檢疫問題,還需管控工作人員的進出;員工除了需負擔額外的健康風險,長期下來也容易造成作業效率不彰之情形。對於大規模豬場而言,建立有效的管理系統相當重要。阿里巴巴旗下的阿里雲(Alibaba Cloud)宣佈,將與四川特驅集團、德康集團合作,將觸手伸到農業領域,對名為ET大腦的人工智能系統進行研發和訓練,以期實現AI養豬的目標,擴大現有的雲端業務功能。   引入人工智慧等先進技術,對於提升養豬效率具有非常重大的意義。這些以往需要依靠人力的工作,如今都可以由影像圖像分析、人臉識別、語音識別、物流算法等技術來完成。未來各豬隻都將有獨特的生長數據,內容包含其品種、年齡、體重、飲食和活動變化等資訊。據瞭解,阿里雲和特驅集團合作的第一波工作包含了各類豬隻數量識別、豬群行為特徵分析、疾病監控和預警、無人秤重等。除了可緩解人力不足的困境,亦可減少人為介入、改善動物緊張之情形。初步實驗結果顯示,通過分析這些數據並應用新的畜牧方法,阿里雲能幫助每頭母豬平均每年生產三頭小豬,並將豬的死亡率降低3%。【延伸閱讀】在人工智慧發展下的農業變革   雖然目前未能確定此系統何時會實際投入應用面,但期望以後能將人力更加有效地運用於管理豬場,並減少農民動物接觸的健康威脅。阿里雲總裁Simon Hu表示:希望未來人工智慧能通過提高收入和減少勞動解放農民。
新加坡使用天鵝機器人監測水質
2018/02/26
新加坡已經開始在幾個主要的水庫放置天鵝型機器人,除了用來監測水質外,因其外型與真正的天鵝相似,也不會破壞到環境景觀。此機器人稱為「智慧水質評估網路機器人」(The Smart Water Assessment Network robots),內部包含多個感測器,能定時收集水質數據,經由Wi-Fi傳送數據到雲端,減少人力消耗與資料收集時間。【延伸閱讀】Aryballe開發的生物感測器—人造鼻,可幫助產品品管並輔助新產品開發   此機器人由新加坡國家水務局(Singapore's national water agency;Public Utilities Board)、新加坡國立大學環境研究所(National University of Singapore’s (NUS) Environmental Research Institute)和熱帶海洋科學研究所Tropical Marine Science Institute(TMSI)於2015年聯合設計,採樣、導航和用電等相關測試已於2016年完成;現在將其放到濱海、榜鵝、實龍崗、班丹和克蘭芝水庫等五個地方。這些機器人可以測量葉綠素a、溶氧量、濁度和綠藻量等參數,進行水體監測、自動採樣和污染物追踪,並可整合資訊作為水質預警和幫助決策進行。此外機器天鵝的本體堅固,遇到橡皮艇或小船時也無須擔心損壞。且下端具有螺旋槳與取水系統,監控範圍可遍布大範圍水域;除了平時自主移動外,必要時也可以遠程操控移動方向以修理或更新零件。
巴西開發使細胞壁更容易分解的草
2018/02/23
石油與煤對人類發展具有重要影響,尤其於19世紀工業革命後成為全世界使用的主要能源,但隨著這些儲藏於地底的物質大量開採及需求增加,未來將會供不應求,影響未來人類生活。目前各國正在積極開發新的替代能源與綠色能源之利用,期望在石油與煤完全耗盡以前能夠維持現有產業及生活所需之能源;而植物細胞壁含有大量的碳,適合作為生質能源發展材料,被視為高應用潛力的替代能源原料之一。   生質(或稱生物質,biomass)是指能夠做為燃料或工業原料使用的有機物,包含生物所產生之廢棄物、和動物皮毛、植物纖維原料等,不包括石油與煤礦。其中植物生質熱值相當高,其中大部分來自於細胞壁,但植物的細胞壁中的木質素性質非常穩定,除了不易被草食動物消化以外,也難以加工用於生質酒精的製造;若是能解決原料分解的問題,將有助於動物利用或轉換為生質能源。   阿魏酸(Ferulic Acid)和對位香豆酸(p-Coumaric acid)為草本植物和單子葉植物合成木質素的主要前驅物,部分研究人員認為降低植物中合成的阿魏酸含量有助於增加生質的分解效率。巴西農業研究機構(Brazilian Agricultural Research Corporation)、能源與材料研究中心(Brazilian Center for Research in Energy and Materials)與英國洛桑研究所(Rothamsted Research)和美國威斯康辛大學(University of Wisconsin)合作,利用RNA干擾(RNAi)狗尾草(Setaria viridis)與二穗短柄草(Brachypodium distachyon)的BAHD01基因表現,通過這種方式所生產的生質糖化效率可提高40-60%。【延伸閱讀】人工合成氨的新方法可降低能源消耗   就技術價值而論,光是巴西的生質燃料市場預估就有4億美元,牛養殖業也有1,900萬美元。且全球皆使用草料作為動物飼料與生質原料,故此發現可作為基因標誌選種,讓畜牧動物從飼料作物中獲取更高的能量,或選取更合適的能源作物種植,提高生質酒精的生產效率。相關研究發表於New Phytologist。
使用小鼠多功能幹細胞培養更逼真的皮膚模型
2018/02/22
雖然目前已開發各種模仿真實皮膚的方法,但仿真度始終不足。哺乳類的真實皮膚由20種或更多功能不同的細胞構成,但現有的模仿組織卻只有包含其中一部分,且沒有一種能夠長出毛髮。   哺乳動物的毛囊(hair follicles,HFs)在胚胎發育期間由表皮和真皮之間的細胞相互影響而產生。在一般的動物模型中可通過多功能幹細胞(pluripotent stem cells,PSCs)分開培養成角質細胞(keratinocytes)和纖維母細胞(fibroblasts),再將兩種細胞結合。而美國的印第安納大學(Indiana University)醫學院開發了3D小鼠胚胎幹細胞培養系統(three-dimensional (3D) mouse embryonic stem cell (mESC) culture),並用來培養皮膚類器官(organoid)與模仿內耳分化,了解表皮細胞如何產生囊腫;但研究人員發現此方法還能產生具有類似毛囊的小型皮膚組織,毛囊的產生與分化有賴於表皮與真皮細胞的共同發展,此兩類細胞必須以特定的方式一起生長,才能使毛囊發育。使用肉眼觀察會發現皮膚細胞團看起來像帶毛的球體,漂浮於培養基中,毛囊向四面八方向外生長,如蒲公英種子。   皮膚類器官本身由三或四種不同類型的真皮細胞和四種類型的表皮細胞組成,比過往開發的皮膚組織更接近小鼠的真實皮膚。雖然研究小組還無法確定類器官表面上的毛髮屬於何種類型,但此技術可幫助創造更好的皮膚類器官模型,未來可用於藥物測試或是觀察觀察皮膚癌的發展等作業。【延伸閱讀】植物的衍生性揮發物質作為抗菌劑之潛力   相關研究發表於Nature、Nature Protocols和Cell Reports
乳牛臉部影像辨識
2018/02/20
近年來隨著科技進步、鏡頭畫質提升、影像處理晶片效率提高與辨識演算法的進展,使得生物辨識技術逐漸成熟;此外,民眾逐漸重視資訊安全,也使得生物辨識技術獲得市場重視。生物辨識技術是結合影像擷取、定位、影像處理與計算比對等多種技術結合,藉由獨特的生理特徵或行為來區分個體,常應用於資訊週邊產品的認證;除了廣為人知的指紋辨識、人臉辨識技術,現在也可運用在酪農業中的乳牛辨識。   英國初創公司Cainthus發展出獨特的視覺訊息計算方式,可運用於各式智能設備的測量分析,現在更與美國Cargill公司合作,將此技術應用於Dairy Enteligen平台的乳牛影像辨識。該圖像識別系統能透過攝影機拍攝的斑點和面部差異於數秒鐘內分辨個別牛隻,紀錄後以電腦系統監控個別牛隻的飲食及飲水量。除了將以往費時的手動紀錄轉換為即時記錄,還能於異常狀況發生時向農民發送健康警報,協助酪農預測問題並調整餵養措施,精進管理系統。【延伸閱讀】利用AI影像辨識勘查雞隻生長狀況   Dairy Enteligen能將牛奶產率、動物健康、飼料配方等資訊視覺化,使結果方便易懂;加上準確的牛隻辨識系統,可鎖定個別動物的生理變化,方面農民管理。雖然目前的發展重點在酪農業的電腦追蹤系統上,但預計未來將擴展到其他類型的畜牧動物,包括豬、雞以及水產養殖場。一旦客戶有能力做出積極的預測性決策,便可有效提升農場的作業效率與增強畜牧動物的健康和福祉。
智慧型感測器幫助及早發現羊跛腳
2018/02/19
羊是世界上主要畜牧動物之一,利用價值極高,而羊跛腳是羊隻最常見的健康問題之一;英國有90%以上的農民均曾發現羊的跛腳症狀,每年花費約8,000萬英鎊處理此問題。造成羊隻跛腳的原因眾多,包含肌肉病變、細菌或病毒感染、關節炎、腐蹄病等,除了影響行動外,羊隻也可能因疼痛而拒絕進食,進而損害健康,若能在羊群中及早發現個體症狀,可以盡快對個體病例進行處理,進而防止症狀在羊群中蔓延。   由於羊對外界非常敏感,當感覺受到威脅時很可能會極力掩蓋跛腳的現象,或因農民和獸醫靠近而變得較為活躍。因此到目前為止,跛腳的相關診斷只能依靠視覺檢查,且診斷結果不一定合乎真實狀況。英國諾丁漢大學(The University of Nottingham)的獸醫系與Intel及Farm Wizard公司合作開發一種新的智能穿戴式設備,可以自動檢測綿羊的跛腳症狀。【延伸閱讀】運用攝影機開發預警系統來檢測雞蟎侵擾   透過測試感測器放置位置與利用三軸加速度計與陀螺儀等感測器分析羊隻躺臥、站立、走路等一般行為,搭配隨機森林演算法(Random Forest algorithm)學習與分類,可以幫助判斷羊隻行動時的的姿勢異狀,協助農民與獸醫判斷羊跛腳症狀。此類傳感器運用的案例能促進畜牧動物的健康福利,且透過精確的行為監測系統能長期掌握動物行為與健康的變化,幫助農場主人快速決定用藥時機以預防疾病擴散。   相關研究發表於皇家學會(The Royal Society)
便攜式設備幫助偵測假酒
2018/02/15
過去在印尼、墨西哥、中國、波蘭和俄羅斯等地皆有因酒精汙染造成消費者身體不適甚至死亡的報導。此問題源自於商人希望賺取更多利潤,將自製假酒、水、抗凍液等作為稀釋液體,取代一部分的真酒。販賣假酒或稀釋過的酒或許能為經銷商賺取更多利益,除了標示與內容不符,具欺騙消費者的嫌疑。此外,摻假酒品內可能具有影響健康的汙染物,對人體影響更大。因假酒或混和過的酒在外觀上與真品無異,造成消費者辨識困難,也無法即時檢出與避免假酒。   美國伊利諾大學(University of Illinois)設計了一種具有先進感測器陣列的手持式設備,可以辨識酒的改變,協助管控酒的品質。研究人員開發了一種帶有36種染料的一次性感測器,這些染料接觸到酒蒸汽中的特定成分後會發生不同顏色變化,透過多種染料的交叉反應,結合約手掌大小的成像分析儀判定比色後可幫助在兩分鐘內簡單判讀酒的真偽。此裝置能夠正確辨識14種不同酒類的酒精含量和品牌,包括蘇格蘭威士忌、波本威士忌、黑麥威士忌、白蘭地和伏特加等,準確度大於99%;且甚至能夠辨識加水量少於1%的稀釋酒,具有於後端快速檢查與控管品質的利用潛力。【延伸閱讀】用以改善水壩營運的小型傳感器-Sensor Fish   相關研究發表於美國化學學會(American Chemical Society)推出的ACS Sensors
海洋暖化危機—食物網弱化
2018/02/12
全球氣候變遷正在以許多方式影響海洋生態,包含海水溫度上升、海平面上升、海水酸化、洋流改變等,已經逐漸改變海洋中的生物多樣性及生態習性,進而擴散到整個食物網的結構。   澳大利亞阿德雷德大學(University of Adelaide)使用了mesocosm進行生態系統模擬,每個系統存有1,800公升的水,內部的礁石、海藻、魚類及其他生物盡量模仿真實生態系統配置,配合機器調整內部潮汐與日夜狀態,進行為期五個月的微型氣候變動與觀察,探討內部生態系與食物網的變化情形。   一般健康的食物網中具有種類豐富的生物,具有穩定數量的生產者、消費者與分解者,且能量可以在其中不斷循環。但透過環境模擬,研究小組發現,由於氣候變化對海洋環境的影響,使得位於生產者層級的藍綠藻大量繁殖,雖然食物網底層的生產者大量增加,但能量卻更難傳送到高級消費者;進而導致高級消費者死亡形成的碎削減少,分解者食物來源減少,不斷循環後食物網穩定性降低。此外,部分藻類具有毒性,快速繁殖也會造成局部區域的水生動物缺氧或死亡。【延伸閱讀】提高區域生物多樣性能確保市郊農民在極端氣候中穩定獲益   因此作者Hadayet Ullah推論,氣候變遷所引起的海洋暖化和酸化會將複雜的海洋食物網導向簡單、生產力較低的草食生態系統,不利於肉食動物生存。另外,簡化的生態系統經過環境劇烈變動後復原力較弱,應注意其連鎖效應是否將威脅到全球漁業。   相關研究發表於PLOS Biology
全球首例以體細胞核移植成功之複製猴
2018/02/07
繼1997年「桃莉羊」利用「體細胞核移植」技術複製成功之後,20種以上之哺乳類動物複製也相繼成功,但是卻一直無法複製與人類相似的靈長類動物。生物學頂尖國際學術期刊Cell於2018年1月25日在官網上發表封面文章,中國大陸中國科學院神經科學研究所利用「體細胞核移植」(somatic cell nuclear transfer, SCNT)技術,成功複製2隻靈長類長尾獼猴(Macaca fascicularis),透過此技術未來將建立非人類之靈長類動物研究模型,加速人類遺傳疾病之新藥開發進程。   中國科學院研究團隊於本次研究中關鍵成功因素,在於採用胚胎猴的「纖維母細胞核」(fetal monkey fibroblast)做為細胞核之來源,而非成猴的「卵丘細胞核」(cumulus cells),並且利用表徵遺傳調節子(epigenetic modulators)促進胚胎細胞發育,因而大幅提高長尾獼猴之懷孕成功機率。研究團隊將胎猴纖維母細胞胚胎,植入21隻代理孕母體內,成功誘使6隻母猴受孕並產出健康的2隻小獼猴。顯示此法可使細胞較容易發生重新編程(reprogramming),成為全能性的胚胎細胞,提高體細胞核移植後成功複製的效率,且能規避掉因基因編輯衍生的脫靶效應(off- target effect)等非專一性調控之相關問題。【延伸閱讀】最新的研究發現迷你豬在野豬族群擴張的過程中扮演重要的角色   此項技術不僅為生物學帶來新的突破,也可用於精進其他複製動物的相關實驗,或許能拯救瀕危物種,維持環境中的生物多樣性。未來亦可應用於人類新藥開發前期之試驗研究,以模擬人類疾病之複製猴研究模型,來提高藥物功效之準確性,預期可加速人類於阿茲海默症、自閉症、免疫缺陷、腫瘤、代謝性等疾病之新藥開發時程,為生醫領域開啟新的里程碑。
搬貨下田任我行,油電混合搬運車創造新商機
2018/02/06
傳統農用機械以柴油引擎為主,近年為解決空氣汙染問題而開始發展電動農機,但目前電動農機扭力不足,以至於無法滿足田間實際作業,也會因為負重過重而影響到車速,無法達到使用者對搬運速度的需求。 由國立嘉義大學(簡稱嘉大)艾群副校長帶領的嘉大團隊、國立成功大學團隊及南臺科技大學團隊以西螺果菜市場作為計畫發想地,思考如何讓農業機械可以田間運用又能在果菜市場運行卻不造成空氣汙染,團隊發現汽車採用的油電混合混合系統技術尚未被應用到農業機械上,從車輛發展的觀點來判斷,油電混合系統是農業機械未來發展趨勢。 以西螺果菜市場作為計畫發想地 農委會期望透過「推動農業科技產業全球運籌計畫」,讓我國在面對全球經濟快速變化時,可以讓國內農業從單純的生產型,轉變為有應用加值創新的產業,因此於2015年開始輔導研究團隊投入「農用柴油引擎油電混合搬運車研發」,將油電混合系統應用在農業機械上,滿足動力需求,並且降低汙染以及耗能。 研究團隊選定西螺果菜市場作為計畫發想地,這裡是全臺最大的果菜批發市場占地4公頃左右,每天蔬菜交易量高達1千公噸,場內蔬菜主要來自於附近產區採收、販運商從全國各地收集,以及山地蔬菜直接運至市場銷售。 市場建築屬於半密閉空間,場內運送貨物除了機車、貨車外,就是柴油拼裝車作為主要運輸工作,但目前西螺市場內使用的柴油拼裝車是單缸引擎,在運轉時會發出巨大聲響並排放出陣陣黑煙,造成空氣汙染問題,如能同時兼顧農田搬運及果菜市場內運輸,將獲得農機使用者青睞。 依照實際需求選擇動力模式 研究團隊先找出搬運機中容易製造大量煙霧的位置,導入油電系統減少排煙量,並考量使用者學習新型機械的狀況,因此以現行農用搬運機作為範本,在不更動操作介面的情況下進行油電混合系統架設,並新增過去農用搬運機缺少的儀表板,希望操作者能以最短時間上手使用。 團隊成員表示,臺灣早在6、7年前就已推動電動農業機械,雖然電動方式是對環境最好的選項:無汙染、無噪音,但是對農民來說電動農機有續航力以及充電問題,96V電動馬達電池在過度放電的情況下,平均壽命僅有6~8個月且電池售價達10萬元,對農民來說是不小的成本負擔。 這是國內第一部自製研發油電混合動力系統的農用搬運車,以柴油引擎動力為主,電力為輔,有純電、油電混合、純油三種模式,適合在果菜市場、農用道路或是農田等地使用,負重量可達1千公斤。電力是採用48V電動馬達電池,道路行駛時,可以透過柴油引擎動力替電池充電,除了可以縮短充電時間外,還可以避免過度放電延長電池壽命,保守估計電池壽命可長達2至3年,價格約落在2萬元左右。 開到一半沒電,還有柴油可以支援 農用柴油引擎油電混合搬運車的柴油使用量與傳統搬運機車輛相同,電池從完全沒電到充滿時間大概需要10個小時,本次研發車輛應用快充技術以及電池雙向平衡充電技術,在夜間可以透過研發的快速充電器EV Charger針對搭載的48V電動馬達電池進行快充。另外系統也會在日間行駛時依據電力需求,進行48V-to-12V降壓充電,供給車用電子設備電力(12V電池),或是在48V電池耗盡後進行12V-to-48V升壓充電,回充48V馬達電池。 團隊成員指出,使用者還是會擔心電動車行駛在路上故障或是沒電,車輛故障可能會造成新鮮蔬果被太陽曬壞或是阻礙果菜市場的通道,油電混合混合車能提供車輛另一種動力選擇,不用擔心沒電或是其中1項動力故障。值得一提的是,車輛搭載48V電池,若在農地等潮濕環境發生車輛漏電狀況,觸碰車身不用擔心會對人體造成致命傷害。 未來可望拓展外銷通路 研究團隊開發農用柴油引擎油電混合搬運車的過程中,發現目前沒有測定混合動力的法規,為了要測定這臺搬運車的動力而發展出「一種提供混合系統動力最佳化的性能測試平台」,正申請發明專利中,未來可以提供類似車輛進行動力檢驗。 此農用柴油引擎油電混合搬運車已技轉晟豐農業機械公司,業者表示會希望採用3期環保引擎降低空氣汙染,並改善農機實用性。團隊成員表示,從純電切換為純油狀態時,需要等待引擎啟動而有時間差,未來期望能進一步改善。 研究團隊看好國際市場,指出先前國內展覽已有國際廠商接觸,希望可以購買,目前最大目標為改良引擎,使其更環保,並減輕車體重量,讓油電混合搬運車更節能。 【相關資訊】 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw

網站導覽
活動資訊
訂閱RSS
電子報訂閱