MENU
主題專區
要進行溫室氣體減量,首先需瞭解排放情形,包含排放源、排放係數,透過精準掌握農產業碳排資訊,針對熱點投入資源進行滅量工作,建立低碳的耕作與養殖模式,推動農機電動化與設施設設能效提升,建構低碳農業。
全部主題
利用智慧型手機管控生產成本
2018/02/02
近年來智慧型裝置使用越趨普遍,配合多元開發的應用程式,能提供更即時與方便的功能,加上各國正致力於推動於智慧農業與科技化,若能結合普羅大眾手邊的行動裝置,將能使農民更加便利行事。   美國愛荷華州立大學(Iowa State University)提供畜牧生產者一個新的應用程式-ISU Livestock Crush Margins,可用來評估畜牧業的生產成本。程式使用Crush margin(CM)計算,以動物銷售價格減去大豆或玉米等飼料期貨合約價格,再扣除原先購買的動物(例如斷奶的仔豬或仔牛)成本,得到最終利潤率,這些資訊隨著使用時間增加,能夠每週更新紀錄,累積起來就成為長期的利潤變化趨勢,幫助使用者找出最適合銷售的時間。   由於動物的買入價格和飼料成本佔了畜牧業總投入成本的絕大部分,因此隨時計算與評估利潤變化有助於長期監測市場變化。此應用程式能讓使用者自行輸入數據,且不受時間與地點影響,兼具靈活性與便利性;雖然計算出來的數值並非絕對性指標,但可用於比較與回顧歷年的生產表現與營運趨勢,利於未來的營銷與生產風險管理。【延伸閱讀】煤生物轉化的模型預測   相關計算資料與程式請參考連結
創新健康畜產養殖,讓產地到餐桌「同一健康」
2018/02/01
臺灣地狹人稠,高密度的飼養無可避免加快流行病在禽畜中的傳播,也會影響禽畜的生長情況。事實上,和人一樣,禽畜都需要妥善的營養照料。在農業科技的進程加持下,新劑型維生素的誕生,不僅有助降低抗生素用量,還能增強禽畜抵抗力,促進生長效果。 臺灣的畜牧技術已相當先進、成熟,藉由育種技術,也成功培育出成熟時間越來來越短、抗病力越來越強的雞隻品種;在先天環境的條件限制,高密度飼養卻也是難以改變的現況。而所有的禽畜,都和人一樣,都是要「預防重於治療」,在飼料中添加優質營養劑,增強吸收率,就能幫助農人飼養出最好的畜產肉品。 藉由行政院農業委員會啟動的「推動農業科技產業全球運籌」計畫,貿立實業公司申請執行「農業業界科專計畫」,完成的新劑型奈米微乳化維生素技術開發,強化飼料添加物品質,為飼養業者開創飼料添加物新選擇,有助於飼養者因應禽畜各種緊迫狀況及不同生長階段與飼養環境的營養需求。 應用奈米微乳化技術,降低飼養風險與成本 具有獸醫師背景的貿立實業董事長劉學文,致力於臺灣畜牧產業發展,全心投入動物飼料營養相關產品,自成立以來,就不斷力求突破,希望協助業者提供更高品質的肉類產品,同時大幅提升動物的營養狀態與健康。貿立提供許多解決方案,讓動物重量均勻增加,減少仰賴抗生素,並增強禽畜從飼料吸收營養素的能力。迄今,在禽畜營養的專門業務上,已建立包含有機礦物質合成、微生物發酵、營養配方設計、功能性營養劑生產及國際貿易業務等5個平臺。 「貿立實業為改善一般維生素粉末或傳統液體維生素溶解度低的問題,及提升維生素於動物體內之吸收效率,開發出水包油(Oil in Water, O/W)技術,並成功研發出畜禽用奈米微乳化型態液體維生素。」產品營銷經理李穎儒進一步表示,「這項技術主要是將脂溶性維生素包埋於水分子中,形成水包油的特殊球型結構體,因此在水溶液中能以任意比例溶解,具有高溶解度及高透析性。 而經由試驗研究結果顯示,新劑型奈米維生素可在半小時內被蛋雞與肉雞快速吸收,吸收速率較一般液態維生素需1.5小時顯著提升,同時可提高蛋雞與肉雞對維生素之利用率及飼料換肉率,提升蛋重及肉雞體重,並能適時改善蛋雞與肉雞處於緊迫壓力時所發生之生理狀態與反應。」 換句話說,透過此新劑型奈米維生素之生產技術開發,不僅可穩定生產含充足維生素且功效穩定之飼料添加物,強化飼料添加物品質,還能降低飼養戶之飼養風險與成本。 無抗養殖營造安心健康成長環境  除了首創應用奈米微乳化技術,推出新劑型奈米維生素「益維寶」外,貿立另還推出酚多精(液劑)、酚多精S(粉劑)系列產品,結合多種植物精油和漢方植物萃取成分,用來取代傳統抗生素或降低抗生素用量,並提供客製、定性化產品。 「天然的植物精油與漢方中草藥,如薄荷、板藍根等,本來就具有一定程度的預防效果,不僅針對疾病可治標治本,相對抗生素也更安全,及不易產生抗藥性及藥物殘留問題。」李穎儒說,「這樣不但有助於降低畜牧養殖各類發炎,如呼吸道疾病、生殖系統等問題,對於緊迫症狀,像是病原菌、疫苗過敏、高溫、併欄、運輸等,也同樣具抑制病原菌生長與發炎生成的作用,達到無抗養殖的目標。」,「2018年將會推出抗熱包覆酚多精產品,對粒狀飼料具有更高的功效。」 「現今食品安全問題,突顯出建立健康畜產養殖的重要性。」曾任職財團法人農業科技研究院動物科技研究所,現為貿立實業資深市場經理的劉昌宇博士指出,現代人雖然非常重視肉品安全,卻忽略一個最重要的根本,「其實從養殖禽畜的建築、環境的溫度乃至其餵飼的飼料都與禽畜的優劣息息相關嗎?」就如同英國俗諺說:「You are what you eat」,意指吃進什麼樣的食物,就決定什麼樣的身體,我們想要吃到健康安全的食物,也得讓禽畜在安心健康的環境下成長。 「事實上,只要友善飼養指標達成時,高品質與安全的肉品自然隨之而來。開闊的飼養空間降低疾病的發生率、在地取食避開飼料添加物中的藥物與抗生素,更增添肉品風味、人道屠宰與低溫處理則確保肉品在分切過程中不受微生物汙染,保持鮮度與口感⋯⋯這都是顯而易見的道理。」劉昌宇表示,不過臺灣受限於先天條件,實在難以達成這樣的飼養方式,「所以我們希望為禽畜爭取福利,讓他們能夠透過優質的營養品,健康安全的成長。」 媲美歐美日大廠品質,前進國際佈局 目前,貿立實業從研發、生產至通路,掌握禽畜營養一貫化作業,導入ISO9001品質管理系統及HACCP危害分析重要管制點,且自行設置營養檢驗室,以確保生產及管理系統上,能符合國際規範及食品安全的管制,不僅品質媲美歐、美、日,更受到大陸及東南亞等市場青睞,並已於菲律賓取得登記販售,積極於越南、印尼、泰國及馬來西亞進行佈局。 就如歐盟國家推行「同一健康」的概念,禽畜的健康直接影響消費者的健康,安全只是產銷履歷最基本的承諾,其他像是友善環境、禽畜福利之生產管理等,其實也是消費者應該重視的環節,從產地到餐桌,絕對是對健康的最佳投資。 【相關資訊】 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw
乳牛餵食微藻能提升乳製品營養
2018/01/26
隨著素食人口逐漸增加,微藻(Microalgae)被認為具有取代動物性蛋白的潛力,部分食品藉由添加微藻強化營養素含量。隨著越來越多的食品製造商將微藻納入其產品開發,預期銷售將會迅速增長;根據Credence Research 的報告,全球微藻市場預計在2023年達到447億美元。   微藻中含有豐富的Omega-3脂肪酸,可降低人體膽固醇,幫助預防心血管疾病。Omega-3脂肪酸又稱為n-3脂肪酸,屬於不飽和脂肪酸類,最常見的為ALA、(α-次亞麻油酸,α-Linolenic acid)EPA(二十碳五烯酸,Eicosapentaenoic acid)和DHA(二十二碳六烯酸,Docosahexaenoic Acid),而母乳中含有豐富的ALA,具有保護嬰兒視力、增強智力等功能,提供嬰兒成長發育所需營養。但西方人的飲食中所提供的長鏈Omega-3不飽和脂肪酸含量普遍低於每日建議量,雖然可以魚產品補足營養;然而受到過度捕撈的影響,魚類供給可能不足,且魚類本身無法自行合成EPA,需要依靠攝食藻類補充。   先前研究指出,添加亞麻籽到牛飼料中可以幫助草飼牛生產的牛奶中含有更多的Omega-3脂肪酸。而現在英國哈珀亞當斯大學(Harper Adams University)發現,在牛飼料中添加微藻也可以增加牛奶中的長鏈Omega-3脂肪酸含量,提升奶酪、優格等以牛奶為基底的乳製品中所含的營養,同時也降低了產品中飽和脂肪酸的含量,口感卻維持與傳統飼養的產品相同。【延伸閱讀】今年首批青貯料額外措施之建議   微藻於酪農業的商業潛力在於,富含Omega-3的牛奶可以提高乳製品產業的競爭優勢,且可以幫助素食飲食中提供更好的營養來源,而不必改變素食者的購物習慣。
降低石斑魚生產感染風險,用模場管控每個環節
2018/01/25
石斑魚屬於高經濟魚種,但因石斑魚容易感染致命性疾病,也讓相關業者頭痛不已,農委會水產試驗所海水繁養殖研究中心主任葉信利帶領研究團隊從民國99年投入石斑魚模場技術建立,期望能夠解決疾病問題,近兩年團隊還引入智慧化管理、開發新魚種完全養殖技術,試圖為不穩定的石斑魚市場開拓出一條新路。 透過模場建置,期望達到三防目標   民國98年行政院核定「石斑魚產值倍增計畫」,從制度、研發、行銷等面向都有一定程度的規劃,當時臺灣石斑魚產業蓬勃發展,但疾病問題也隨著產業發展逐漸嚴重。水試所在民國99年投入石斑魚模場的技術建立,為了解決疾病問題,水試所提出要朝向整場輸出的方向發展,便著手進行研究。   民國103年開始,行政院農業委員會推動「推動農業科技產業全球運籌計畫」,輔導各單位在面對全球市場劇烈變遷時,能夠促進農業產業創新,因應市場變化。因此農委會水產試驗所海水繁養殖研究中心團隊便負責執行「石斑魚養殖模廠技術之建立」計畫,更進一步朝強化建構生物安全設施、健康種魚篩選、乾淨餌料生產、白身苗生產以及中間育成標準化作業流程等技術,來推動石斑魚模場產業化,達到整場輸出目的。   葉信利表示,當時提出計畫規模是現今模場兩倍大,後來因經費問題僅建設一半,但是仍保有當時規劃的育苗、中間育成、養成等設施。希望透過模場改善石斑魚的生產品質、降低氣候變遷的影響以及水平感染的機會,達到防寒、防熱、防疫三個目標。 杜絕石斑魚垂直感染,從種魚篩選做起   研究團隊這幾年監測模場溫度,發現室內外溫度差異可達攝氏4~6度,寒流來襲時,室內溫度可維持在攝氏16~18度,105年霸王寒流來襲,模場石斑魚完全沒受到任何影響。面對室內場可能會帶來的高溫影響,團隊成員笑著說,模場建置時,防熱其實是相當關注的焦點,因此室內場中有架設多組抽風扇協助夏季的溫度調節。   但環境溫度控制對團隊來說並不是最大的困難點,由於石斑魚會經由垂直及水平感染病毒,每個生產環節操作都顯得很重要。葉信利表示,垂直感染的關鍵是來自於種魚帶原,以龍膽石斑來說,民國89年海水繁養殖研究中心就開始為場內的龍膽石斑植入晶片、檢測是否有帶原等,只要發現有帶原病毒就會捨棄該尾石斑魚,透過16年養殖管理以及從育苗系統檢測子代是否帶原等方式,來篩選健康種魚。 水質、餌料、人員進出都是水平感染途徑   垂直感染需要長期對種魚監控,防止種魚帶原病毒。但水平感染途徑相當多元,只要「接觸」就有機會影響石斑魚,因此研究團隊針對石斑魚開發乾淨餌料生產系統,篩選不帶原的橈腳類、輪蟲進行養殖,並使用益生菌及光合菌進行生物培養,目前一批次餌料生物可供應50萬至100萬尾石斑魚苗食用。   與石斑魚息息相關的另一部分就是水質問題,過去水質可透過臭氧、UV、電解水、化學藥劑等方式進行處理,研究團隊發現,近年機械成本降低,電解水是具有經濟效益且穩定的處理方式。目前場內電解水設備1小時可處理100噸用水,而全場僅需1200噸的用水量,葉信利指出,實際檢測電解水後,發現裡面不會有其他生物及病原,水質也有符合標準。   最容易被大家忽略的水平感染途徑就是人員進出,病原可能會隨著人員進出而入模場中,因此人員進入模場前會先經過獨立空間消毒,以降低甚至是摒除不必要的風險。葉信利說,透過多項環境控制,石斑魚育苗率可以達到7~10%,是平均育苗率(1~3%)的3倍。 開發新型魚種,提升產業競爭力   葉信利指出,過去石斑魚相當興盛的年代,也有許多業者以生產為目的進行模場建設,但是經濟效益不如想像中好。若以一條龍生產模式進行估算,會發現到魚苗及中間育成階段具有市場競爭力,但是於養成階段則容易受到市場售價影響。   近年臺灣石斑魚價格起伏不定,研發新魚種養殖技術已是當務之急,目前研究團隊建立新興石斑魚種褐石斑完全養殖技術,葉信利表示,褐石斑在日本是屬於高價石斑但產量少,經過團隊測試後發現褐石斑可以在攝氏5~32度間活存,屬於可以面對氣候變遷的魚種,但因生長速度緩慢需要透過育種克服,目前已利用雜交技術希望培養出耐低溫、長得快的石斑魚種,期望能站穩繁殖腳步來開拓新市場。 引入智慧化管理,未來模場將應用高經濟魚種   石斑魚模場正在試驗自動化、智慧化管理,透過置入水中的監測儀器可隨時了解養殖池水的狀況進而降低風險,另外也利用水中攝影機觀察石斑魚攝食狀況,減少不必要的餌料消耗。葉信利表示,引入智慧化管理會提高成本,但是能節省人力、穩定水質,產生的效益很可觀,但智慧化與傳統管理的平衡點還需要再經過測試與計算。   石斑魚模場也在近年的石斑魚價格不穩定狀況中,逐漸轉向海水魚模場的形式,葉信利說,除了石斑魚外,像是笛鯛、東星斑等都是高經濟魚種,模場可因應不同的海水魚種進行修正。目前研究團隊打算從智慧化管理過程中蒐集大數據,計算運用智慧化管理進入模場後能達到的實際效益,期望一兩年後能夠有結果,之後就會著手建立相關資料及生產模式,納入更多高經濟海水魚種來加以運用。   【相關資訊】 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw
昆蟲飼料可提高家禽產業之永續性
2018/01/24
蛋白質為人體必要的營養來源之一,傳統畜牧業與漁業提供了絕大部分的動物性蛋白質,蛋白質飼料來源則歸功於豆類與玉米等作物;然而現今全球人口數量持續上升,使得蛋白質需求量逐漸提高, 一般的肉類生產系統會消耗大量的能量、水與土地資源,因此找尋節能且有效的飼料替代物為當務之急。   巴西為禽類蛋白質的主要出口國之一,先前的肉雞生產評估顯示,飼料生產時的間接用水占產業總用水量的99%。雖然家禽生產肉類的效率比牛羊等畜牧動物高,但其衍生之環境汙染與自然資源的消耗都會限制產業的擴大範圍。故研究人員嘗試用昆蟲作為替代性飼料的蛋白質來源,希望幫助減少生產時的能量損耗,以提高經營家禽產業的永續性。   巴西的里約熱內盧聯邦大學(Universidade Federal do Rio de Janeiro;UFRJ)選擇利用黑水虻(Black Soldier Fly Larvae;BSFL)加工成昆蟲粕,並與原家禽生產系統所使用的豆粕進行比較,以能值(Emergy)評估系統中的能量損耗和使用效率,並以焦耳(seJ)表示。此系統涉及三個步驟,包含a)建構系統中的能量利用流程圖,並設定主要組成部分與邊界;b)在能值評估表中記錄數據;c)計算能值指數後討論結果。   研究人員發現,使用昆蟲粕(insect meal;IM)的轉換效率為78,408sej/J,而豆粕(soybean meal;SBM)則為191,899sej/J,顯示昆蟲粕的能值轉換率(transformity: emergy per energy of the product)較豆粕提高144.74%,可再生性(renewability)提高了45.64%。此外,使用昆蟲粕的環境負荷率(Environmental Loading Ratio;ELR)較豆粕減少1.91到1.04,而能值可持續性指數(emergy sustainable index;ESI)從0.86提高到0.96,家禽產量亦有增加。 相關實驗計算結果代表BSFL昆蟲粕能有效提高巴西家禽產業生產的永續性,雖然目前尚有法規與商業規模的生產限制,但隨著資源越趨稀少,昆蟲飼料技術具有未來家禽業之高度應用潛力。【延伸閱讀】昆蟲添加劑可能作為對抗家禽傷寒的工具   相關研究成果發表於Journal of Cleaner Production
生物性電子鼻幫助「聞」出腐敗味
2018/01/22
屍胺(Cadaverine;CV)是一種具有腐臭氣味的化合物,在動物身體組織腐爛時因蛋白質中的離胺酸(Lysine)脫去CO2而產生,高濃度屍胺會呈漿狀甚至結晶狀,能於空氣中發煙並具有一定毒性。生肉、生魚或其他海鮮放置一段時間後會逐漸腐敗,在腐敗初期由於內部所含屍胺甚少,因此無法經由外觀或氣味辨識;雖然可藉由烹煮殺死食物中的細菌,但屍胺等腐敗胺類卻無法消除,導致食用後的食物中毒與過敏現象。目前屍胺可利用酵素免疫分析法(Enzyme-Linked ImmunoSorbent Assay;ELISA)、高壓液相層析法(High Performance Liquid Chromatography;HPLC)、比色法等方法偵測,但各國並無相關腐敗胺類的統一規範。   由於一般使用的偵測法需要高度的專業性與實驗室儀器,無法提供監測食品安全的即時性,故韓國首爾大學(Seoul National University)開發了功能性生物電子鼻(oriented nanodisc (ND)-functionalized bioelectronic nose (ONBN))能用來檢測生鮮食品樣本中的屍胺。其中的生物性受體來自於斑馬魚中對屍胺敏感性高的受體膜蛋白TAAR13c (trace-amine-associated receptor 13c),將相關基因放入大腸桿菌中製造大量蛋白,純化後放入nanodiscs,藉由nanodiscs穩定膜蛋白結構與生理功能,之後再結合奈米碳管薄膜場效電晶體(carbon nanotube-based field effect transistors)形成高靈敏度的生物電子鼻。【延伸閱讀】牛肉經分解而得的多肽可以減少苦味   雖然早前已有研究指出斑馬魚中含有對屍胺具高度親合性的受體,但遲遲無法突破完整分離與穩定此受體膜蛋白之技術,故此技術可視為機械與生物功能性結合的相關案例之一;雖然初步測試只有檢測食品新鮮度,但未來電子鼻或許可應用至偵測食品防腐劑含量或甚至發現屍體,幫助警方辦案及救災使用。   相關研究發表於美國化學學會的ACS Nano
站穩基礎科學研究,全功能智慧水族套缸讓養觀賞魚一次上手
2018/01/19
1千多年前,中國就已經有馴養金魚作為觀賞用途,隨著科技進步,觀賞水族的範疇已經不僅限在過去認知的金魚,也拓及到蝦類、貝類,甚至是頭足類。 但近年來大家逐漸重視觀賞水族生物的原生棲地保育問題、能否適應水族缸內的生活環境,以及這些生物有沒有經濟價值,各個專家學者開始投入提升觀賞魚產業技術的研究,期望能夠建構觀賞物種的繁養殖技術、開發相關水族飼料,甚至是打造新型觀賞水族設備,強化物種品系等。 開拓觀賞魚市場,提升產業競爭力 行政院農業委員會透過「推動農業科技產業全球運籌計畫」,提升我國農業競爭力、建立國際品牌並開拓新商機,因此漁業署藉由該計畫與國立臺灣海洋大學、國立屏東科技大學、國立臺灣大學及國立高雄海洋科技大學等學校合作,期望能夠進一步提升觀賞魚的產業技術,甚至去開發具有市場潛力物種的繁養殖技術。 另外為因應目前大多數人都有智慧型手機的狀況,該計畫團隊結合物聯網與雲端技術,打造免換水智慧魚缸,除了讓消費者能夠隨時用手機掌握自家寵物狀況外,也透過自動化設備調整魚缸水質,降低觀賞水族新手飼養門檻。 一機搞定自家小魚的生活環境 要在家中或是辦公桌上養一缸魚,聽起來很簡單但是又好像很困難,依照生物特性的差異,有些觀賞魚或是觀賞蝦對於水質環境、溫度較為敏感,一不注意可能就會全數死亡。 由朱元南、張麗君與陸振岡等專家學者開發的智慧水族套缸,顛覆以往飼養觀賞生物需要準備水族缸、過濾器、燈,甚至冬天還需要準備加溫設備等狀況,他們將這些必要的器材合為一,打造目前最小的可控溫免換水自動化智慧水族套缸。 為了要能夠讓消費者可以應用於辦公室、住家等區域,該團隊發現市場現有的中小型套缸未結合冷水機、投餌機等功能、而且過濾功能差異大,再加上燈具常有過熱問題,因此團隊從上述問題點下手,進行套缸設備器材開發。 開發過程中,團隊試圖將養殖觀賞生物這件事變得更輕鬆與簡單,於是他們創造出懶人式海水與淡水套缸,這樣的小型套缸可全年養殖珊瑚、觀賞蝦與水草,免除過去需要勞心勞力照顧生物的過程。 除解決現有的問題外,團隊還著手進行套缸的節能材料開發、導入水質監控系統、建構水體自淨與水中微生物處理技術,並結合時下最熱門的物聯網系統,期望能夠達到節能、智慧化管理,讓消費者可以用手機就能監控水族缸狀況,觀察生物的活動情況。 水中生物長得好,基礎研究不能少 有些人養觀賞水族是為了調劑身心,但有更多觀賞水族玩家希望這些生物能展現出亮眼的顏色或是體態,因此飼料研發與繁養殖技術的增進顯得更為重要,像是沈士新、黃之暘、劉俊宏、黃沂訓、葉信平、吳宗孟、劉擎華、施彤煒、鄭安倉等多位專家,就針對多種觀賞生物進行研究。 這些團隊引進與開發具市場需求觀賞水族的相關技術,針對觀賞水族的繁養殖、體色、性別調控、飼料、量產進行研究,如:海馬是近年大家所喜好的養殖生物,但海馬的價格與體色是呈現正向關係,因此團隊就針對海馬體色調控技術進行試驗研究,期望能增加海馬價格。 值得一提的是,這些團隊注意到海水觀賞魚有超過90%以上都是依賴野生捕撈,長期的商業行為嚴重影響特定族群,也造成生態環境的損耗,甚至有可能會有族群大量減少的情況發生,因此團隊也著力在海水觀賞魚的繁養殖研究,像是今年就有嘗試進行棕紅小丑魚的種魚配對,期望能夠減少野外撈捕的問題。 滿足消費者的需求,觀賞水族能有更多樣貌 面對消費市場轉向小型、精緻等方向發展,提升繁養殖技術取代野生捕撈已經成為趨勢,目前大和米蝦和長額米蝦這兩種工作蝦的量產技術已在黃沂訓團隊的努力下開發成功,但觀賞水族總以多變的花紋與體色取勝,因此黃沂訓、黃章文團隊嘗試將大和米蝦進行突變誘導,試圖將沒有顏色的工作蝦變成具有繽紛色彩的觀賞蝦,如此將能提高十倍甚至百倍的價值,然而突變試驗最快要在第三代才能顯現出體色差異,因此須等到能生產穩定顏色的品系後,才會進行量產。 【相關資訊】 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw
人工智慧將幫助農民提早發現作物疾病
2018/01/12
早期鑑別作物病害需依靠專業人士進行肉眼觀察病徵,通常發現時病害已造成田間地區一定程度上的損害,且大面積專一性種植的田地觀察不易,所面臨之病害損失可能更高;因此發現病害時間越早,越能降低產業風險,並有利於精準用藥,減緩周遭環境負擔。   一般的NDVI圖像可以利用紅光與近紅外光的反射以反映某地區的植被數量與生長特性,然而一旦被上層作物遮擋,就無法顯現出下方潛在的作物變化。美國的Evergreen FS與Ceres Imaging公司合作,利用多重光譜成像呈現區域中植物的受到的環境壓力數據(例如營養與水分不足),並結合葉綠素、熱成像、氮含量、疾病等壓力的數據進行模型分析,有助於在疾病爆發前及時找出需要處理的區域,適時使用藥劑或肥料。以往此技術只用於果園或葡萄園,但現在嘗試用於大規模種植的農場,協助疾病的早期監測。【延伸閱讀】人工智慧幫助病蟲害風險管理   透過一年的測試結果,此技術能在肉眼尚未可見的情況下先發現玉米和大豆中的病原真菌和缺水等問題;依作物種類不同,每英畝花費從6到10美元不等,但能節省更多資源與藥劑成本。康乃爾大學農業與生命科學院教授Michael Gore指出,人工智慧雖非萬能,但預計在五到十年內將被玉米和大豆農民普遍使用;而此技術未來若能搭配無人機拍攝,更能促進農業自動化,有效幫助農民縮短決策時間。
美國開發農業模型預測氣候變化對作物產量的影響
2018/01/08
為了推動農業自動化與精準化應用,加上近年來科技越趨於發達,許多研究者投入程式開發,以期結合農業發展,促進農業進步。美國伊利諾大學(University of Illinois)與全球變化聯合研究機構(Global Change Research Institute)發起大型計畫,開發了新工具來預測氣候變化對作物產量的影響。   該計畫並非第一個開發農業模型預測的計畫,但通過結合土地模型(Community Land Model;CLM)和農業生產系統模擬器(Agricultural Production Systems sIMulator;APSIM)的優越特性,測試以CLM-APSIM為代表的新型玉米生長模組的指標。以往的農業計算模組以不同時間的植株狀況為基礎,而氣候或地球環境模組則用於觀察與推測氣候改變;此技術結合兩者的優點,使其用於農業領域上能更符合當時的天氣狀態,讓生產預測性能得以提高。【延伸閱讀】新的模擬模型可更精準預測作物產量與氣候變遷對作物所帶來的影響   原始的CLM模組只有三階段的生命週期,但部分重要的發育階段(如開花期),作物碰到的環境壓力狀況無法被模組完整預測。因此,團隊將具有12個階段的APSIM納入CLM,APSIM包含了植物、土壤pH值、水分管理、氮磷含量等全面性的管理,可用於精準預測作物的生產情況,幫助資源分配與管理者決策。此外,研究人員還在新模組中進行創新改善,增加了碳分布和糧食數量模擬分析,並對原有的垂直結構進行了改進。新的模組能更正確分析作物生長狀況並得到正確的產量結果,未來計畫將擴展於其他主要作物的模擬,如大豆和小麥,也可以用來調查農業生態系統和氣候系統之間的雙向影響。   所有工作均在伊利諾大學國家超級電腦應用中心(National Center for Supercomputing Applications;NCSA)的超級電腦Blue Waters上進行,相關研究結果發表於Agricultural and Forest Meteorology。
研究可抵抗多重逆境環境之關鍵基因
2018/01/05
在植物生長期間,環境因子會影響植物的生理狀況,遇到影響生長或改變生理特性的逆境時,生物體會產生相應的反應以適應環境,而逆境來源主要可區分為病原造成的生物性壓力與環境(如乾旱、高鹽、高溫)導致的非生物性壓力,若持續時間越長所對植株造成的傷害越大。目前已知當植物受到非生物性逆境影響時,會產生一種由糖解或其他代謝反應產生的methylglyoxal信號分子,其在細胞內累積達一定量則具有毒性,會抑制細胞增殖與破壞粒線體原有功能,並可能降低植株抗逆境之效果。   以往研究大多僅確認某些基因是否能夠對應生理上多種非生物性抵抗壓力之研究,但在此次透過印度國家生物科學中心(National Centre of Biological Sciences;NCBS)和印度科學研究所(Indian Institute of Science;IISc)的合作研究下,發現了一個影響控制植物對生物和非生物壓力反應的關鍵基因- Heat shock protein 31(Hsp31)。Hsp31是廣泛存在於生物中的基因,保守性高且具有methylglyoxalase之功能,能轉換有毒之methylglyoxal成無毒D-lactate,同時減緩氧化壓力所造成的細胞凋亡影響,可通過單一基因的表達就有可能在植物體中對各種不同緊迫壓力下產生一定程度的抗性。【延伸閱讀】發現牛隻腸胃道微生物相組成與甲烷排放間的關聯將是農業永續利用的關鍵之一   現階段該項研究計畫仍處於菸草植物階段,並證實在菸草中的Hsp31大量表現確實可抑制酵母菌細胞內的methylglyoxal並進行解毒,將可幫助植株抵抗多種生物性與非生物性的逆境,與影響粒線體中的逆境相關基因表現,此項新的發現未來也許可用來開發能抵抗高溫、乾旱或易感病等具多重抗性品種,對於耐逆境品種之選育亟具有發展潛力。
對抗小麥莖銹病的新發現
2018/01/03
植物寄主與病原菌於自然界中演化許久,彼此消長而達到動態平衡。若植物中的R基因蛋白能辨識病原的Avr基因,就可以引發植物的免疫反應,達到抵抗病原的效果,且此植物稱為抗病株。然而病菌的Avr基因也會經過變異與演化,使得植物原有之R基因無法辨識,病菌就能順利感染植株,形成植物病害。   造成小麥莖銹病(wheat stem rust)的病原菌為Puccinia graminis f. sp. tritici (Pgt),其中的Ug99菌株遍部非洲與中東地區,對小麥田的破壞性極高,而與Ug99相關度不一的毒性株也引起小麥高密度種植地區的重視;最近更在歐洲發現新的毒性株,將有傳播到美洲地區的可能性。   澳洲悉尼大學(University of Sydney),英國聯邦科學與工業研究組織(Commonwealth Scientific and Industrial Research Organisation;CSIRO),美國明尼蘇達大學(University of Minnesota)和美國農業部(United States Department of Agriculture;USDA)的研究人員為了瞭解小麥與銹病菌毒力的演化關係,探討了AvrSr50基因與Sr50基因的關聯。   Sr50對包含Ug99的所有小麥銹病菌株皆有抗性,為找出相應的AvrSr50基因與變異特性,研究人員收集了不同來源菌株的序列數據,確定了病原AvrSr50基因組中容易發生變異的區域,進而表現出對Sr50的抗性。此研究成果顯示了植物的免疫系統如何直接辨識特定的真菌蛋白質,並抵禦病原,相關技術也可以應用於預防與了解其他重要的植物病害的基因演化。【延伸閱讀】啟動RNA訊號防治害蟲   相關論文於Science發表,明尼蘇達大學植物病理學兼職教授Peter Dodds表示,到2050年時,發展中國家的小麥需求量預計將增長60%,光是經濟上就有巨大影響,若能妥善運用相關知識將有助於解決糧食安全方面的問題。
減少乳牛抗生素使用的新工具
2017/12/29
有鑑於致病菌對抗生素的抗藥性(antimicrobial resistance;AMR)日益嚴重,全球衛生領導人呼籲減少農業和人類醫療的抗生素使用。   諾丁漢大學(The University of Nottingham)的獸醫學院於Veterinary Record的報告中研究了英國特定乳牛場的整年度抗生素藥物使用狀況,其中取了358個農場場作為調查樣本,內含乳牛總數約為81,000頭,佔全國乳牛總數的7%。調查發現,大部分的抗生素為注射用,並且佔所有使用(或出售)給農場之抗生素總量的78%。此外,治療皮膚炎的牛足浴使用了大量的抗生素,是目前需要減少的目標。   近年來預防勝於治療的觀念逐漸興起,因此英國乳牛場的抗生素使用持續下降。為了協助評估抗生素使用狀況,研究人員開發了一種新的線上工具- AMU Calculator,能記錄每日用戶使用的藥品與抗生素,並將輸入數值從施用毫克/每公斤個體數量(population corrected unit;PCU)轉換成統一的固定劑量單位DDD(defined daily dose)或DCD(defined course dose),幫助獸醫或農民紀錄長期藥物用量之趨勢與不同品種、年齡、性別等族群間的比較。【延伸閱讀】利用地理資訊系統整合日本全國土壤肥力資訊   此類新型監測工具可協助建立不同牲畜使用抗生素的基準與監測比較不同地區間藥物施用的情況,提升藥物利用的精準性,減緩抗藥性的產生。目前已有50位獸醫開始使用AMU Calculator,但要建立適用於全國的用藥基準還需要再收集更多資料,才能幫助農民和獸醫找出更有效的藥物治療方案。   此工具可於AHDB Dairy免費下載,網址如下:https://dairy.ahdb.org.uk/resources-library/technical-information/health-welfare/amu-calculator/#.WkGwFN-WaUk
小型且便於攜帶的高靈敏食品過敏原檢測器
2017/12/28
人體對某些食物會產生不良反應,包含搔癢、腹瀉、水腫等輕重不一的自體免疫症狀,因此需嚴格避免接觸過敏原。然而考量現今社會採買食物與在外用餐狀況,欲完全避免問題食物非常困難。故哈佛醫學院與麻省總醫院合作,開發了鑰匙圈大小的簡易檢測器iEAT (integrated exogeneous antigen testing),由袖珍型檢測器、電極片和一次性試劑盒等三個部分構成。其中檢測器可連接個人智慧型手機,可於現場檢測食物中的過敏原並上傳數據到雲端。   首先在試管中溶解一小塊食物,讓磁珠與過敏原結合,之後放一滴混合物在小電極片上並插入檢測器,10分鐘內iEAT可連通至用戶的智慧型手機,顯示過敏原是否存在與其濃度。此外,配合手機應用程式,用戶能夠編輯與儲存在不同的餐廳及包裝食物中檢測到的各種過敏原資訊;隨著程式中累積的資料量增加,會逐漸形成獨一無二的個人記錄,透過與他人的資訊分享,將可逐步篩選出較不引發過敏的餐廳或食物。【延伸閱讀】盈利預測系統可能可以協助降低印度農民因負債而導致自殺的狀況   該系統具有高靈敏度,可檢測出比美國聯邦標準低200倍的麩質濃度。除了協助消費者掌控個人的食品安全,該設備也可用於檢測標籤標示不清的食品,有助於醫生、食品行業和監管機構等加強食安管理。後續還能依需求調整設備以偵測其他過敏原或物質,幫助大腸桿菌或沙門氏菌等汙染物來源追蹤。   相關研究發表於2017年8月的ACS Nano
3D體感技術應用於動物即時監控與體重測量
2017/12/18
進行農場管理時,動物體重是日常健康監測的重要指標,但受到人力與時間限制,無法於短時間內重複進行個別動物的測量。故法國正努力研發更便宜、更方便的新型設備取代老式的秤重籠,以便進行這些例行性的動物體重測量。   在法國Romillé的IFIP實驗站與Advansee公司合作開發了一個原型裝置,該裝置由位於畜舍建築走廊的支架組成,其約長3公尺,寬1.80公尺,高1.80公尺,並於同一平面安裝5個Kinect相機,其安裝在中心處1個以及門廊角落4個,中心處的相機將會在最佳時刻控制所有相機同時進行拍攝,以完整地呈現動物影像,同時Kinect相機每秒可拍攝30張照片,並利用RX成像儀測量50頭豬(10-110公斤)的體積大小,且所有數據會傳送到電腦中進行計算,並將動物的體積轉化為體重。其目標是增加三維秤重之精確度,持續藉由改善演算法以減少體積估計值與實際測量結果之間的差距,以確切得知動物體重,因此目前正在嘗試將重量誤差縮小到5%內。【延伸閱讀】自動化3D攝影幫助及早發現豬咬尾   該計畫預計於2018年初結束,希望在優化3D測量準確性的同時也能降低成本,期望未來可幫助屠宰前的體重等級分類,或是結合動物身上的RFID(Radio Frequency Identification)晶片識別,並存檔於電腦之中進行其他應用,協助業者定期追蹤個別動物的重量變化與生長曲線。
枯草芽孢桿菌可幫助水解羽毛蛋白質作為飼料之應用
2017/12/11
每年家禽業約產生600噸羽毛副產物,若能將其再利用可增加收益並減少環境汙染。其中一種再利用方式是作為飼料添加劑使用,由於羽毛主成分為蛋白質,添加於動物飼料中可補充所需蛋白質並降低飼料成本。但羽毛所含蛋白質中80-90%為角蛋白,角蛋白含有大量雙硫鍵與疏水性,不易被一般的蛋白質水解酵素分解;為了能讓羽毛中的蛋白可被添加到飼料中使用,需要先用化學或物理方式促進角蛋白水解。目前的處理方式是利用高溫蒸氣與化學處理,使得羽毛較容易被分解,但成本昂貴且會耗損部分必需胺基酸,因此巴西研究了利用微生物改善雞羽毛水解產物的技術,並對其所做的副產品作為飼料進行評估。   本研究的目的是使用枯草芽孢桿菌(Bacillus subtilis AMR)幫助雞羽毛分解,並評估該分解產物與擠壓生產之玉米粉混合物作為飼料的有效性。其中一組試驗為添加B. subtilis AMR到含有0.1g 酵母萃取物的100mL羽毛培養基,並且測試了數種緩衝液,包含檸檬酸緩衝液、磷酸緩衝液與甘胺酸緩衝液,將混和物培養8天;另外一組試驗為混和羽毛與磷酸緩衝液6天,另額外添加葡萄糖、蔗糖、玉米漿、酪蛋白與酵母萃取物,此兩組試驗每天進行發酵混和物樣本分析,檢查微生物生長、羽毛狀況、角蛋白分解活性與可溶性蛋白質含量。之後再添加B. subtilis AMR到1L的羽毛培養基中培養6天,使羽毛水解,再混和1公斤玉米粉與260毫升的水解羽毛擠出成形。【延伸閱讀】提升白鮭廢棄物利用價值的新加工系統   實驗發現在pH 8.0的環境下酵素活性和可溶性蛋白質的產量最高,而在羽毛培養基中加入蔗糖(0.5g / L)可使B. subtilis AMR的角蛋白溶解活性增加了1.3倍,是最佳的添加物。此外分析擠出物的物理與化學性質,顯示加入分解後的羽毛提高了灰分和總氮含量,並且可檢測到所有必需氨基酸,表示發酵過的羽毛蛋白質被分解成較小的分子,能促進生物利用度,而這些結果皆顯示此類羽毛水解產物具有作為動物飼料補充劑的潛在用途。
利用微生物製成的燃料電池清理養豬廢水
2017/12/06
養豬等畜牧業於生產過程中會產生大量含有氨與磷酸鹽的有機質廢水,造成周圍環境汙染與惡臭;常見的清潔方式為將廢物集中於特定區域內,利用微生物分解有機物與曝氣處理,製程有機堆肥。然而日本土地資源有限,養豬場集中的地區產生之有機廢棄物已超過當地可利用土地之負荷,因此需要更好的處理方法以減少人力與土地消耗。   沖繩科學技術大學院大學(Okinawa Institute of Science and Technology Graduate University, OIST)使用了一種微生物燃料電池(Microbial fuel cells, MFCs),能幫助類似地點處理廢水問題,減少當地的廢棄物負擔。目前研究人員已開發出可長時間運行且不會故障的MFC,他們在Scientifica上發表的論文中表示,在使用MFC以前需要先培養或接種可進行分解功能的細菌,因此可以將含有細菌之汙泥鏟到MFC的陽極,此部分的細菌大量繁殖後可用於廢水處理。若陽極事先與汙泥中特定廢棄物接觸則MFC處理廢水的效果更好,且使用養豬場汙泥處理廢水的效果優於啤酒廠汙泥。【延伸閱讀】快速且可靠的微生物污染檢測技術   此電池開發的理想目標為:能夠長期使用且不需額外花心力維持運轉。故除了養豬場外,該單位還在其他地區的設置MFC做為測試,其中加利福尼亞的酒廠能用處理過的廢水進行灌溉,而沖繩的Awamori (泡盛)蒸餾廠已運行五年了,廢水處理後可達安全排放到下水道的程度。目前此MFC處理有機物的效率高達90%,但其中產生的磷酸鹽及氨含量豐富,這些營養物質釋放到水中容易造成優養化現象;故沖繩的畜牧研究中心(Okinawa Prefectural Livestock and Grassland Research Center)及環境科學中心(Okinawa Environment Science Center)在當地政府的資助下開發相關營養物質的解決方案,也許可作為有潛力的農業副產物肥料。Goryanin教授表示,廢水處理的最終目標是達到幫助無乾淨水源的國家獲得乾淨的飲用水,緩解全球的廢水負擔。
藉由基因標記與分子育種技術,可加速耐鹽釀酒葡萄品系之開發時程
2017/11/29
澳洲阿德萊德大學(University of Adelaide)與CSIRO 農業和食品部研究合作發現,若土壤環境鹽分含量過高會導致葡萄產量下降,損害植株健康,並使得葡萄含鈉量過高導致釀酒口感不佳,故含鈉量高之葡萄不適合葡萄酒釀造生產,且會降低葡萄園經營者的獲益。而長期以來葡萄酒相關行業因為鹽分造成的損失每年花費超過10億美元,故該研究團隊藉由探討不同植株內鹽分含量差異的原因可有助於選出較適合釀酒的葡萄,以減少經濟損失。   低濃度鹽份葡萄可增進葡萄酒的風味,通過比較不同葡萄植株的基因表現量,其鎖定了根部表現鈉排除之特定基因,此基因可限制了鈉離子(Na+)傳送到葡萄果實及葉子,傳統上美國與歐洲均有其使用之釀酒葡萄之砧木,此一發現將可用來開發新的品種選育之遺傳選拔與基因標記,於苗期時就可以篩選較適用的葡萄基因型,減少田間選擇的時間與成本,並藉由澳洲的釀酒葡萄育種選拔計畫,將不同葡萄株中的有益特性進行結合,以作為澳洲當地發展之葡萄酒行業所用之釀酒葡萄,支持當地的釀酒行業發展與推廣。【延伸閱讀】專家們表示:新興植物育種技術將能解決未來糧食安全問題
導入新興技術之漁業科技可能發展
2017/11/24
隨著捕撈、航運、保存技術的進步,漁業供應鏈已逐漸變得龐大,相關公司和銷售店家的產品越來越受人為環境和供應鏈影響,但隨著供應鏈的壯大,過度捕撈和漁工人權侵害的問題也愈加嚴重。根據十月份發布的Greenpeace Sea of Distress report報導,自20世紀末以來全球漁獲量持續下降,顯示海洋生態系統正遭受破壞,全球三分之一的漁業資源已經枯竭,且美國國務院已在50多個國家的漁船或漁加工設施上發現了遭受非法勞動和販賣的人員。   除了上述因素,漁產品的可追溯性資料也日益重要,以美國為例,北美超過三分之一的海產被貼錯標籤,且高達三分之一的野生捕撈海產屬於非法進口產品,而這些問題促使了數據分析、影像、監控等全球性的前瞻技術有了共同合作發展機會,並協助傳統漁產業進行轉型。   美國一個非營利組織Fish 2.0其積極推動投資人和漁業相關企業之連結,致力於發展漁業永續經營,並藉由舉辦論壇與獎勵比賽中探討漁業之新技術,每個新興企業所投入之研發涵蓋了漁業市場中不同部分,例如: Seatech:建立可提供公司、政府與非政府組織有關自然資源的數據資料庫,確保其漁產品具有正確之來源標記,以告知消費者漁產品的合法性,同時鞏固合法漁企業的市場。 ColomboSky:創設海水養殖監測技術,利用衛星圖像進行水質監測,可以提前預防大量藻類或水母所產生的威脅,減少海水養殖的損失。 ThisFish:研發追蹤軟體協助世界各地之漁業企業,記錄其供應鏈數據,以提高透明化程度和業務效率。 SmartCatch:運用區塊鏈概念到漁業生產運銷過程中,積極鼓勵漁民可透過支付少量金額之方式(micropayments),來交換所需要之補獲資料,以減少誤捕其他海洋生物的機會。【延伸閱讀】日本農林水產省與經濟產業省跨部會合作科技技術創新   目前已有許多大型漁業業者投入漁業科技發展及來源可追溯性之新興科技開發當中,證明這已變成世界性的重要議題,其不僅只是為了消費者之漁產品安全、改善工人勞動環境與瞭解生態系統環境健康狀況而已,更是積極將傳統漁產業導向真正的友善環境與永續發展之目標。

網站導覽
活動資訊
訂閱RSS
電子報訂閱