MENU
主題專區
要進行溫室氣體減量,首先需瞭解排放情形,包含排放源、排放係數,透過精準掌握農產業碳排資訊,針對熱點投入資源進行滅量工作,建立低碳的耕作與養殖模式,推動農機電動化與設施設設能效提升,建構低碳農業。
基因科技發展
族群遺傳研究結果顯示芬蘭大西洋鮭之尺寸正在逐年縮水中
2018/12/10
大西洋鮭(Salmo salar, Atlantic salmon)的營養價值高、肉質口感佳,因此深受廣大消費者喜愛,在魚市中具有高商業價值。市售的大西洋鮭多以人工繁殖方式大量養殖,其中著名的養殖國家有北歐挪威及南美智利等國,也是臺灣進口大西洋鮭的主要來源。大西洋鮭是卵生魚類,雌魚體積一般而言較雄魚大,可儲備產卵時所必須的能量。雌魚懷孕後會季節性洄游至河川上游產卵,孵化後的鮭魚長到適當的體長後,會隨河川順流至下游的海洋中,性成熟的鮭魚於交配後又會洄游至上游原生地產卵,完成其生活史。雖然現在多以人工繁殖的方式養殖大西洋鮭,但野生鮭魚多為生態系中的環境指標物種(indicator)及關鍵種(keystone species),在當地食物鏈中扮演重要的角色,長期監控鮭魚族群的動態,將有助於保育政策及漁業政策之擬訂。芬蘭赫爾辛基大學(University of Helsinki, Finland)、芬蘭自然資源研究院(Natural Resources Institute Finland)與芬蘭圖爾庫大學(University of Turku, Finland)的聯合研究團隊研究後發現,自1970年代調查以來近40年的時間裡,塔納河流域大西洋鮭的重量與體積正在逐年縮減中,這樣的現象也反映在該族群的基因中。   過去的追蹤發現,生活在塔納河流域的大西洋鮭,其性成熟年齡愈趨年輕化,早熟的鮭魚相較於晚熟的鮭魚而言,有著體長較短、體重較輕的特徵,且通常雄魚較雌魚早熟。進一步研究發現性成熟特徵與基因Vgll3的遺傳型式有關。研究人員於Vgll3的基因座(locus)上發現多個遺傳變異,研究團隊將這些遺傳變異分成兩種不同型式的等位基因(又稱對偶基因,allele),並證實其中一個等位基因型式可反映出早熟且體積小、另一個型式則反映出晚熟且體積大的兩種特徵。研究發現成魚尺寸與性成熟年齡隨著年代發生變化的現象,皆反映在其調控基因Vgll3上。研究顯示鮭魚形態特徵的改變並非僅是單純隨環境變化而發生表型可塑性(phenotypic plasticity),而是基因型改變造成遺傳變異,進而產生表型特徵的改變。遺傳特徵隨世代產生變異,這意味著演化正在發生,原有的特徵因生存環境發生變化,逐漸演化成為新的特徵,以適應新的環境變化。研究也發現,大西洋鮭魚族群在短時間內快速地產生遺傳變異,多呈現在雄魚的外表形態及遺傳上,這顯示天擇(natural selection)可能僅作用在特定性別的個體上,產生性別衝突(sexual conflict)的現象。【延伸閱讀】以eDNA追蹤瀕危魚種   這項由芬蘭聯合研究團隊發現的重要成果已於今年10月已發表在<Nature Ecology & Evolution>,相關研究或許能在演化學、族群監控、漁業永續等領域加以應用。研究團隊也希望能在未來找出改變族群遺傳結構的關鍵環境因子,並盡可能防止其影響擴大。
植物激素於太空農業的未來應用
2018/12/04
由於世界人口增加、耕地面積減少、氣候變遷加劇與自然資源有限等原因,向外太空發展農業似乎是一種可行的想法;然而,植物已在地球上經過長期演化,早已適應地球的特殊環境。太空中的重力特性和土壤營養皆與地球上有所不同,欲發展農業則需透過科技技術尋求解決之道。   菌根是一種真菌與植物互利共生的構造,真菌的菌絲比植物的根更細,可幫助植物吸收水分與礦物質,而植物則可供給真菌所需的醣類和脂質,在營養缺乏的環境中,這樣的構造更能幫助植株生長與促進健康。獨腳金內酯(strigolactone, SL)是一種常見的植物激素,在調節植物根與芽之萌發與刺激菌根中菌絲生長具有重要角色。瑞士蘇黎世大學(Universität Zürich)則利用此一特性,測試真菌Rhizophagus irregularis在模擬微重力環境下,於茄科模式植物—矮牽牛(Petunia hybrid)產生的菌根化現象。   由於真菌體內具有重力感受器,因此微重力條件對菌絲發育具有負面影響。而SL生合成和運輸會受到營養缺乏的條件誘導,而植物中的PDR1基因能夠改變的SL運輸效率。透過模擬得知,在微重力環境下,PDR1基因過度表現的矮牽牛仍然可生成較多的菌根。顯示藉由調控基因表現而誘導植物激素產生,並進一步引導菌根生成,或許有利於茄科植物在太空站或其他星球上生長;未來進行植物太空研究時,或可選擇生成較多SL的植物培養與耕作。【延伸閱讀】農桿菌之應用協助人們了解植物繁衍背後之遺傳機制    相關研究發表於< Nature Microgravity >
以eDNA追蹤瀕危魚種
2018/11/16
eDNA又稱為環境DNA (environmental DNA),是生物遺留在環境中的遺傳跡證之一。多數研究利用追蹤生物遺留在環境中的DNA,推估特定環境中生物多樣性(biodiversity)及豐富度(abundance),透過eDNA的採樣將能達到族群現況評估及未來保育的目的。   美國馬里蘭大學環境科學中心(University of Maryland Center for Environmental Science)與史密森環境研究中心(Smithsonian Environmental Research Center)共同研究以eDNA追蹤美國馬里蘭州乞沙比克灣(Chesapeake Bay)中鯡魚的數量。鯡魚是北美地區傳統捕撈魚種,也是當地生態系食物網中許多掠食者主要的食物來源,該物種的族群大小對當地生態系平衡扮演重要的角色,但由於1970年代以來過度捕撈及產卵地被破壞下,現已成為受威脅物種,如何保育該物種成了當地機構研究的重點之一。   研究團隊藉由檢測水域中目標鯡魚遺留在環境的粒線體遺傳片段,並以即時聚合酶鏈式反應(qPCR)將特定片段擴增,以擴增的數值結果量化族群大小及鑑識魚種,藉此能有效評估不同鯡魚族群的豐富度及棲地利用程度,達到監控的目的。與傳統架設漁網捕撈相較下,採集eDNA以分子生物學的方式將大量節省人力及物力資源,即可獲得目標物種的遺傳資訊,推估物種可能的有效族群量及產卵地。研究團隊調查橫跨12處支流,在馬里蘭州境內196個地點採集水樣,發現境內的灰西鯡分布在東岸流域,而西岸已開發流域多為藍背西鯡。【延伸閱讀】藉探索海洋DNA一窺海底環境的奧秘   該研究是自1960年以來,首次在乞沙比克灣流域大規模採樣eDNA進行鯡魚物種及族群方面的生態研究。該研究成果已發表在PLOS ONE期刊,研究結果將有助於當地鯡魚捕撈計畫的擬定及規劃相關保育策略。
基因編輯可減少病毒對養豬業的威脅
2018/11/07
傳染性胃腸炎(Transmissible gastroenteritis)是高度傳染性的豬腸道病毒性疾病,由傳染性胃腸炎病毒(Transmissible gastroenteritis virus, TGEV)感染,主要病徵為嘔吐及下痢,造成嚴重脫水與腸細胞壞死,且2週齡以下的仔豬死亡率接近100%。由於TGEV屬於豬隻冠狀病毒的一種,新的冠狀病毒疾病的爆發是美國養豬業最關心的問題之一,需要透過科學技術找出解決良方。   過去的文獻指出,豬隻身上的ANPEP酶(amino peptidase N)會作為病毒感染時的受體,因此英國種畜公司Genus plc與美國密蘇里大學(University of Missouri)合作,通過CRISPR/Cas9基因編輯改造了負責製造ANPEP酶的基因,成功培育出對TGEV具有遺傳抗性的豬。【延伸閱讀】新興基因編輯技術使豬隻免於藍耳病之苦   此研究還嘗試確認編輯ANPEP是否會對豬流行性腹瀉病毒(Porcine epidemic diarrhea virus, PEDV)產生抗性,PEDV在2013年爆發時造成近700萬頭豬死亡。雖然缺乏ANPEP酶的豬仍會感染PEDV,但未來的研究或許可找出抵抗此種病毒的方式。   2015年時該團隊就以基因編輯培育出對豬呼吸與繁殖症候群(Pig Reprodutive and Respiratory Syndrome, PRRS)病毒產生抗性的豬隻,目標將這種生產抗病毒豬的方法商業化,改善動物健康和福祉,並減少畜牧業生產損失。目前Genus plc目前正在尋求FDA(美國食品藥品監督管理局)批准使用基因編輯技術根除PRRS病毒的威脅。
第一組薰衣草基因組定序發表
2018/10/30
薰衣草(Lavenders,為Lavandula屬,Lamiaceae科)為高經濟價值園藝植物,也是長期以來被廣泛運用的藥草,具有放鬆心情與輔助睡眠的效果,而精油(essential oils, EOs)也廣泛用於美妝、醫藥等產業。   為了更加了解植物精油的產生機制,加拿大的布洛克大學(Brock University)和英屬哥倫比亞大學(University of British Columbia)的研究學者對薰衣草進行基因組定序,並採用de novo draft genome assembly技術進行序列組裝,建立出第一個較為完整的薰衣草基因組草圖(draft genome),並找出精油產生的相關代謝途徑,藉由了解並控制這些基因表達的調控因子,就能生產人類所需成分的精油。   這些資訊可以幫助之後的人員開發各薰衣草品種的鑑定基因標記,或是研究如何利用基因和生物技術協助育種改良,減少薰衣草中的樟腦或提高芳樟醇及乙酸芳樟酯等成分,有利於提升薰衣草精油的市場價值。【延伸閱讀】藉由基因標記與分子育種技術,可加速耐鹽釀酒葡萄品系之開發時程   相關研究得到加拿大自然科學和工程研究委員會(Natural Sciences and Engineering Research Council of Canada)、加拿大研究主席計劃(Canada Research Chair Program)和卑詩省農業基金會(Investment Agriculture Foundation of B.C.)的資助,結果發表於<Planta>。
協助控制牛隻疾病的新型疫苗
2018/10/25
在非洲撒哈拉沙漠以南地區,絲狀黴漿菌(Mycoplasma mycoides subsp. Mycoides,Mmm)感染山羊、乳牛等許多畜牧動物,導致傳染性牛胸膜肺炎(contagious bovine pleuropneumonia或稱lung plague)等疾病產生。目前此疾病依然難以控制,每年造成超過6,000萬美元的損失,並影響2,400萬生產者的生計。雖然受感染的動物可使用抗生素治療,但這些動物多數為非法來源,在惡劣的環境中容易導致治療無效和抗生素耐藥性等問題。   迄今為止,市場上只有一種活性減毒疫苗可以控制lung plague,將疫苗注射到牛的尾部,數週後就會開始產生相應的抗體。雖然疫苗效果很好,但其對溫度較為敏感,在非洲這種高溫地區,容易使得疫苗弱化或是變性,並可能導致接種後的動物產生發炎和潰瘍等免疫反應。   為尋求更好的解決方式,加拿大薩克其萬大學(University of Saskatchewan)通過加拿大國際糧食安全研究基金(Canadian International Food Security Research Fund,CIFSRF)申請並獲得了國際發展研究中心(International Development Research Centre,IDRC)和加拿大全球事務部(Global Affairs Canada)的資助,與肯亞的研究人員合作以開發新的疫苗。   不同於使用傳統疫苗開發方式,研究團隊使用反向疫苗學(reverse vaccinology)開發新型疫苗,利用程式分析細菌基因並找出最可能導致牛產生免疫反應的抗原,再製備與純化所選蛋白質,與佐劑混合測試。在鑑定的66種Mmm蛋白中,有四種可保護牛隻免受侵害。【延伸閱讀】血液檢驗將有利於促進乳牛健康   這種新型疫苗使用肯亞各種Mmm菌株的蛋白質抗原,生產成本更低,且於室溫更加穩定,現今已獲得肯亞疫苗生產商的許可並進行生產,預計將進行田間試驗。反向疫苗學已被用於目前市場上的人類腦膜炎球菌疫苗,未來也可用於開發其他重要動物疾病的疫苗,抵抗結核病菌、黴漿菌、大腸桿菌的感染。
生物營養強化技術使小麥更健康
2018/10/24
穀類富含大量的碳水化合物,自古便做為人們的主食,雖可供溫飽,但人體仍需額外攝取其他維生素或礦物質等元素,如:鐵、鈣、維生素A及B群等,才能進行正常生理代謝。美國農業部農業研究局(USDA Agricultural Research Service)的研究人員Robert Graybosch博士表示:食物中營養素不足或內部所含反營養物質(antinutrients)會干擾人們對營養素的攝取,根據統計,全球約60%的人並未攝取足夠的鐵質。   透過額外添加維生素或礦物質於食物中提升營養價值的手段,稱作食品營養強化(fortification),可幫助補充人體所需養分。傳統的食品營養強化方式為食品添加劑,例如食鹽中適當添加碘可防止甲狀腺腫大。隨著生物技術不斷進步,若能在作物生長的過程中,利用遺傳育種或基因工程等方式,使植物自行生合成特定維生素或礦物質,強化食品本身營養素的方式,則稱作生物營養強化(biofortification)。   以稻米為例,稻米在部分貧困地區是窮人賴以維生的主食,但其中維生素A含量少,貧民在長期只食用稻米的情況下容易缺乏維生素A,使得免疫力下降與疾病產生。經基因工程技術,科學家成功培育富含維生素A的黃金米,提供更有效攝取維生素A的途徑,此為透過基因改良方式達到生物營養強化的案例之一。   Robert Graybosch及其研究團隊以小麥(Triticum aestivum, common wheat)作為研究材料,希望在不減少產量的前提下,探討影響穀物蛋白含量(grain protein content)的Gpc-B1基因與低榖植酸(low grain phytate)的 lpa1-1基因在小麥田間試驗中如何調控產物中的微量元素含量。結果表明,結合此兩種特性可以增加了人類從中獲得的鋅、鈣和錳等元素。【延伸閱讀】植物科學發現可能有助於治療過敏和免疫缺陷   雖然此研究結果有助於培養高蛋白含量、低穀植酸且單位面積產量不變的小麥品系,但植物基因表現容易受環境因素影響,因此在其他地區可依照這些研究結果調整小麥品系的育種背景方向,例如未來可改良北美大平原(Great Plains)的小麥,利用基因漸滲(introgression)的方式獲得生物營養強化的優良性狀,並在北美草原大量推廣種植。
血液檢驗將有利於促進乳牛健康
2018/10/16
microRNA(小分子核醣核酸)是真核生物中廣泛存在的短片段核糖核酸分子,可調節其他基因的表達,影響動物繁殖、代謝和免疫等功能,部分microRNA的表達具有組織特異性,可在血液檢查時作為疾病發生的潛在生物標誌。   長期以來,人類為了獲得更多產量,對乳牛的遺傳特性進行選擇,高產量乳牛是現今市場主流;然而,高產乳量除了需要耗費更多飼料外,也連帶使得牛隻容易患有乳腺炎、子宮感染或其他疾病。英國高達三分之一的乳牛受到疾病或繁殖障礙的影響,除了隱含的動物福利問題,也間接提升酪農成本。   英國愛丁堡大學(University of Edinburgh)和蘇格蘭農村學院(Scotland's Rural College,SRUC)研究發現,血漿中的microRNA 含量會隨著乳牛年齡、產乳量、乳腺炎指數、生育能力等產生變化。目前血液中microRNA含量已可以在實驗室中分析,用於評估組織變化,應用於人類疾病的診斷,或許可以使用簡單的血液檢測來預測乳牛的健康和生產力,將有利於乳製品行業並改善動物福利。【延伸閱讀】利用新型細胞株快速診斷非洲豬瘟   此項計畫由SRUC資助,相關研究發表於<Scientific Reports>,然而資料庫中的乳牛資訊較少,需要借助人類研究標靶做為參考,未來將持續開發改善動物福利和農場作業的應用性。
低氣孔密度水稻更能因應氣候變遷
2018/09/25
水稻(Oryza sativa)是人們賴以維生的糧食作物之一,估計每公斤稻米需要使用到2,500公升的水,屬於水資源密集型的產業,而目前全球近半以上的稻米作物來自雨養農業系統;然而氣候變遷已逐漸改變現有的種植環境,極端乾旱和高溫的出現將會更加頻繁,因此消耗大量水資源的水稻將不符未來所需。   水稻如同大多數的植物一般,使用氣孔調節二氧化碳進入與釋放蒸散作用的水氣,另一方面也可調節植株溫度。在水份不足時,氣孔會關閉以減緩水分流失,低密度氣孔的水稻保水效果更好,在必要時也存有較多的水可供植株降溫。   英國雪菲爾大學(University of Sheffield)則藉由基因工程開發出一種高產水稻品種-IR64,透過水稻表皮形成因子OsEPF1基因的過度表達,能夠產生較少的氣孔,用水量僅占一般品種60%,對於未來的高溫和乾旱氣候具有更強的耐受性。此外,在大氣二氧化碳濃度升高的情況下,基因工程水稻在乾旱與高溫(40℃)中的存活時間更長,且產量更高。【延伸閱讀】保護區之劃設有助於減緩生物面臨氣候變遷之衝擊   此項低氣孔密度植物的研究或許能更加推進後續氣候變化對於農作物和糧食安全的發展,相關研究為P3 (Plant Production and Protection)與菲律賓國際水稻研究所(International Rice Research Institute)合作進行,發表在<New Phytologist>。
利用全基因組關聯性分析標記天然遺傳抗性基因,解決大豆蚜蟲害問題
2018/09/13
美國是目前全球第一大大豆出口國,種植地區分布於中西部各州,是當地相當重要的經濟作物。除了氣候變化以外,病蟲害也可能造成農產品災損,大豆蚜(soybean aphid,學名Aphis glycines)引起的蟲害便是其一,為此若能降低大豆蚜的族群數量,便能減少經濟損失。   大豆蚜原生於亞洲地區,北美地區於2000年才在威斯康辛州被記錄。大豆蚜的生活史有部分時間是在大豆植株上。目前的防治方式除了透過農藥及非農藥資材的方式施用之外,選拔具病蟲害抗性的物種抑是對抗大豆蚜的方法。雖然可利用基因工程的方式將具抗性的遺傳物質直接轉殖到大豆上,但隨著目前民眾與各國政府對基改作物的疑慮,該技術的施用仍需評估,因此現行可行的方法是透過分子性狀選拔的方式找出相關的抗性基因。   科學家在早些年前即發現某些大豆品系與抵抗蚜蟲相關的基因,稱作大豆蚜抗性基因(aphid resistance genes, Rags),具該性狀的基因可有效的降低大豆蚜在葉下產卵拓殖的機會,選拔出具Rag基因或與Rag基因關聯的性狀,可暫時解決蟲害問題。然而如同施用農藥逐漸產生抗藥性的問題一樣,經過幾個世代後,具抗性的大豆蚜將又會拓殖其族群量,人們又將面臨大量具抗性的大豆蚜族群。   美國明尼蘇達大學農藝暨植物遺傳學系(Department Agronomy and Plant Genetics, University of Minnesota)的副教授Aaron Lorenz及其團隊將1000多種已知的大豆品系進行全基因組關聯性(Genome-Wide Association)分析,利用統計方法,標記(map)特定染色體區域與蚜蟲抗性具統計上相關的基因。Lorenz與其同事利用這個方法找出一些先前研究未被標記,而其中具潛在抗性的候選基因。目前該研究團隊仍須針對這些區域加以研究。該研究提供了具抗性的候選基因供後人進行病蟲害防治的相關研究。【延伸閱讀】利用微針萃取技術快速獲得植物組織中的病原DNA   本研究由明尼蘇達州大豆研究及推廣委員會(Minnesota Soybean Research and Promotion Council)、明尼蘇達州入侵陸生植物及害蟲中心(Minnesota Invasive Terrestrial Plants and Pests Center)提供經費上的協助。該研究成果已於8月初發表在<The Plant Genome>。
利用DNA檢測食物中微量的花生成份
2018/09/12
對花生過敏的人而言,即使食物內含有微量的花生,都能引發程度不一的過敏反應,嚴重者則會令患者呼吸困難,甚至造成休克死亡,因此花生過敏者都應避免食用含有花生的食物;然而部分產品標示不實,這對消費者而言是個隱憂。據統計,美國有3,000萬人對花生過敏,且近十年來此類人口有穩定上升的趨勢,若產品成分中具微量且忽略未標示的花生原料,對這群過敏者而言,將產生嚴重危害。目前研究人員已研發出DNA檢測法,用來檢測食物內是否具花生DNA的微量跡證,得知食物內是否用花生作為產品原料之一。   在食物加工處理的過程中,受到高溫、高壓或乾燥等過程,大部分的蛋白質結構都在過程中受到破壞。相較於蛋白質,食物內的DNA在加工過後仍可保持部分完整的片段,提供比蛋白質更多的辨識資訊。不僅如此,在植物的細胞中,具許多葉綠體基因,因此美國食品藥物管理局食品安全暨應用營養中心(Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration)的研究員Caroline Puente-Lelievre及Anne Eischeid想出利用分子生物技術中的聚合酶鏈鎖反應(polymerase chain reaction, PCR)法,擴增(amplify)食物中的特定基因片段,例如花生的葉綠體基因,以判斷食品中是否含有花生的相關成分。【延伸閱讀】幫助液態檢體診斷新技術   研究人員選用葉綠體中matK, rpl16及trnH-psbA等三個基因片段做為檢測用的分子標記並設計引子(primer)。利用上述的分子標記,研究人員可檢測含花生成份的三種常見食品:烘焙食品、巧克力及番茄醬,且該技術靈敏度可高達1ppm,比起先前的檢測技術敏感度更高,因此若能加以推廣,必能保障廣大的消費者的健康。   該研究已於2018年8月發表在<Journal of agriculture and food chemistry>
基因工程提升光合菌的固氮活性
2018/09/05
早期農民進行耕作時,每隔一段時間便會進行休耕,於土地地力恢復後再進行下一波種植。隨著人們對於糧食的需求量提高,重複使用同一塊土地種植作物會快速消耗地力,需要依照土壤性質、作物需求與環境變化適時提供肥料,才能確保植物生長良好;但肥料施用後並不完全被植物吸收,反而易受到雨水逕流、微生物利用或其他因素而損失,反而造成藻華等環境汙染。   氮肥是作物主要養分之一,但是植物卻無法自行固定空氣中的氮,只能依靠微生物協助固氮或經由土壤吸收所需的含氮物質。此外,生產肥料需要消耗大量能源,不符合現今各地所提倡之永續性,因此美國華盛頓大學(Washington University)研究藍綠菌Cyanothece的固氮機制,希望將其應用於作物上,穩定未來全球的糧食安全。   微生物可經由固氮酵素(nitrogenase)催化固氮作用,但此酵素卻會因為氧氣存在而失去效用,而藍綠菌Cyanothece可在白天行光合作用,並在夜間固定氮氣,故研究小組將Cyanothece 中的固氮基因群nif (nitrogen fixation)轉移至另一種藍細菌中,並加入氫化酶(hydrogenase)基因,成功提升固氮酵素對氧氣的耐受性,目前工程化的Synechocystis 6803菌株具有超過30%的固氮活性。【延伸閱讀】促進藍綠菌生產琥珀酸之方法   研究小組未來將會繼續探討固氮基因群的影響細節,或應用於植物細胞的其他可能性,希望未來可減少施肥所帶來的能量與勞動力消耗。   相關研究發表於美國微生物學會(American Society for Microbiology)推出的<mBio>
在植物上找到的新型抗生素macrobrevin
2018/08/23
抗生素(antibiotic)是由微生物生合成的次級代謝物,能抑制其他微生物的生長,有利於其拓殖新棲地與競爭生長資源;人類則利用此特性作為醫療、農業、或食品等方面殺菌或制菌的藥劑。然而,抗生素大量使用卻造成細菌演化出多重抗藥性,使得人類逐漸無法抵抗病原性細菌的感染,因此各界均極力尋找新型抗生素以幫助解決抗藥性問題。   瑞士蘇黎世聯邦理工學院微生物學研究所(Institute of Microbiology, ETH Zurich) Julia Vorholt博士及其團隊利用植物界模式物種阿拉伯芥(Arabidopsis thaliana)作為研究材料,研究其葉圈(phyllosphere)上的微生物相(microbiota)組成。研究團隊發現,由於葉圈上的微生物為了有限的營養資源而彼此競爭,透過分泌抗生素或相關的次級代謝物抑制其他物種生長及繁殖,一旦競爭成功便佔據整個葉表,成為強勢菌群。另外,將葉表上的微生物相基因組進行定序,並利用生物資訊學分析其中細菌間的交互關係。透過生物資訊的研究發現約五萬個交互作用中有725個是與抑制性交互作用(inhibitory interactions)有關,其中Brevibacillus屬中的細菌Brevibacillus sp. Leaf 182抑制其他細菌的效果較佳。經純化次級代謝物並進行資料庫比對後發現了新的化合物,研究團隊將此化合物命名為macrobrevin,未來也將持續探討macrobrevin於醫療上的應用性。【延伸閱讀】叢枝菌根菌對大豆胞囊線蟲的抑制潛力   此研究是由瑞士國家科學基金會(Swiss National Science Foundation)贊助,相關資訊發表在<Nature Microbiology>。
新興基因編輯技術使豬隻免於藍耳病之苦
2018/08/10
豬繁殖和呼吸障礙綜合症(porcine reproductive and respiratory syndrome, PRRS)俗稱藍耳病(blue-ear disease),是由藍耳病毒(porcine reproductive and respiratory syndrome virus, PRRSV)感染豬的巨噬細胞(macrophage)所引起的病症。豬隻體內局部的巨噬細胞會先受到感染,爾後再慢慢擴散至鄰近的淋巴腺,最後擴及肺部組織,造成呼吸道感染,母豬會因此患有嚴重的繁殖障礙,新生的豬仔若因染上此病,則會得到嚴重的肺炎。由於患病的豬隻通常伴隨著耳朵呈現藍色的病徵,因此俗稱藍耳病。藍耳病在美國及歐洲每年造成的經濟損失高達二十五億美元,創下單一病毒造成經濟動物最大損失的紀錄,若能使豬隻免於感染,將大幅的減少經濟損失。   藍耳病毒感染豬巨噬細胞是非常專一的過程,藍耳病毒感染巨噬細胞的過程中會透過受體媒介形式之胞吞作用(receptor-mediated endocytosis),被細胞膜上特定的受器蛋白CD163成功辨識後將藍耳病毒攝入胞內,病毒在胞內啟動複製程序並影響宿主細胞的代謝,導致宿主細胞的凋亡,複製成功後便透過同樣的方法感染下一個巨噬細胞,完成藍耳病毒的生活史。由此可知:藍耳病毒若無法專一辨識膜上受器蛋白CD163,將無法成功的感染宿主細胞。   英國愛丁堡大學羅斯林研究所(University of Edinburgh's Roslin Institute)的研究團隊利用有別於傳統將外來物種的基因轉殖到目標物種的基因改造(genetically modified)技術,以CRISPR/Cas9新興的基因編輯(gene editing)技術,將目標物種的基因CD163進行編輯,在不影響受器蛋白的主要功能下,研究團隊僅編輯一小段與藍耳病毒辨識有關的CD163序列,這樣的做法使研究的豬隻全數免於藍耳病之苦。雖然這技術被認為有別於基改技術且十分有效,但由於目前歐盟嚴格禁止基改農畜產品進入消費市場,因此應用這項技術進行編輯的豬肉是否有違法之虞,恐成為未來討論的重點。另外,基因編輯技術的農畜產品能否安全地被人們所食用,還有待後續實驗做進一步釐清。【延伸閱讀】中國利用基因編輯技術開發亨丁頓舞蹈症豬模型   本研究由英國生物科技及生命科學委員會動物衛生研究協會(BBSRC Animal Health Research Club)資助下完成研究,發表於知名病毒學期刊<Journal of Virology>。
促進藍綠菌生產琥珀酸之方法
2018/07/23
藍綠菌(Cyanobacteria)是地球上廣泛存在的微生物之一,能夠利用以光合作用合成自身所需養分,屬於自營生物。而帶有葉綠素或葉綠體的自營生物,能經由複雜的代謝過程固定大氣中的二氧化碳,將光能轉化為化學能,提供後續生理各階段所需能量。微生物的代謝途徑十分複雜,琥珀酸(succinate)便是其中一項重要的中間產物;此外,琥珀酸也是現今石化工業經常使用的原料之一,可從石油或微生物轉化而得,藍綠菌可經由代謝過程將二氧化碳轉化為琥珀酸,若是深入探討此細菌合成琥珀酸之機制,將有助於微生物協助工業製造的發展。   日本神戶大學(Kobe University)發現實驗室中常使用的藍綠菌Synechocystis sp. PCC 6803於攝氏30至37度間,隨著環境溫度上升,代謝途中重要的有機酸產物也會跟著增加。經過分析,確認磷酸烯醇丙酮酸羧化酶(Phosphoenolpyruvate Carboxylase,PEPC)參與的代謝過程中重要的速率決定步驟,因此使用基因工程技術改變了藍綠藻Synechocystis sp. PCC 6803,將其生產琥珀酸的速率提高至先前研究報告中的7.5倍。【延伸閱讀】燻蒸劑對土壤健康方面的最新研究   此系列研究有助於人類進行微生物碳代謝途徑之基礎研究探討,未來或許也可應用於商業化微生物之固碳速率提升。相關研究發表於<Metabolic Engineering>
可經生物降解的植物保護產品,促進環境永續
2018/07/10
為了避免昆蟲啃食植株造成產量損失或傳播病害,慣行農法中會噴灑農藥驅趕或殺死農業害蟲,雖然能夠維持農作物產量,但卻因此減少其他無害甚至有利於植物授粉的昆蟲數量,例如蜜蜂。此外,殘留於環境中的合成藥劑可能因雨水沖刷而流入土讓或附近的湖泊、河川甚至海洋,影響該地區的生物多樣性,因此長期以來農藥的施用量與施用時機持續受到各方爭議。   考量環境永續與食安問題,越來越多人投入有機農業與研究減少農藥使用的方法;而煙草植物可自行於葉片中產生一種稱為cembratrienol的化學物質,防止害蟲靠近植株,因此德國慕尼黑技術大學(Technische Universität München,TUM)將相關的基因轉殖於大腸桿菌中,利用發酵槽大量產生cembratrienol,再使用離心分配層析(centrifugal partition chromatography,CPC)與高效液相色譜法(high performance liquid chromatography,HPLC)純化,透過實驗證實純化的產品具有良好的驅蚜蟲效果。   目前使用cembratrienol的定位類似於人體使用防蚊劑一般,將其噴灑於植株上只是利用害蟲對其氣味的忌避性,並無毒害昆蟲的疑慮,同時也具有生物降解性,減少累積於環境當中的風險。此外,在大腸桿菌生產過程中能夠使用輾穀廢料進行發酵,有助於循環使用農業副產物,建立對生態有利的下游加工選擇。而此研究使用CPC回收純化的方法更加節省溶劑的消耗,相關的純化方法或許可作為類似化合物純化回收的參考資訊。【延伸閱讀】研究發現糞金龜能改變土壤菌相組成有助於強化糧食安全   相關研究發表於<Green Chemistry>
調控HMGA2基因表現能夠控制豬隻體型
2018/06/15
動物體型大小除了與生長期時的食物營養成分有關,動物體內本身所帶有的基因也可能影響個體的成長狀況。HMGA2就是一種廣泛存在於哺乳類動物體內的高度保守性基因,目前已知此基因表達狀況會影響人與小鼠的個體尺寸與生長。在小鼠體內中其中一個HMGA2的等位基因失活會造成體重減少20%,兩個等位基因接失活則會使得體重減少60%,而人類HMGA2基因序列部分缺失會導致個體身材矮小。   北卡羅萊納州立大學(North Carolina State University)的研究人員於先前研究已發現小鼠基因 HMGA2 與 HMGA1 與體型和身體質量指數 (Body Mass Indicator) 相關,本次透過基因編輯與體細胞核轉移(somatic cell nuclear transfer,SCNT)製造出HMGA2基因缺陷的豬隻,透過26週的生長觀察,發現HMGA2-/-的豬隻體重較正常豬隻減少75%。此外,HMGA2的基因缺失影響了胎兒在母體子宮內接受的資源,若是子宮內同時存有正常與HMGA2-/+、HMGA2-/-等個體,則HMGA2-/-個體無法在懷孕期間存活,且HMGA2-/-與子宮絨毛接觸不良,顯示子宮跟胎盤間的連結較差;若子宮內只存有HMGA2-/-,這些胎兒就能存活並正常發育。【延伸閱讀】全球首例以體細胞核移植成功之複製猴   此項研究不但讓人們更了解動物生長發育的過程,未來也可以將相關觀念應用於跨物種的器官移植當中,藉由調控移植個體所摻生的器官大小,使其大小更符合受贈者之需求,並避免移植後的過度生長。
中國利用基因編輯技術開發亨丁頓舞蹈症豬模型
2018/05/30
亨丁頓舞蹈症(Huntington's Disease,HD)屬於一種神經性退化疾病,為第四對體染色體的顯性遺傳,發病後會導致腦部神經細胞持續退化,造成病人無法控制自身運動,甚至發生身體僵硬與智能衰退的情形,透過電腦斷層掃描可明顯見到腦部萎縮狀況。多數患者為成年後發病,從初期的平衡失調、情緒異常到中後期的不自主運動與認知能力衰退,患者常死於跌倒、感染或其他相關併發症,目前尚無治癒該病症的方法。   早期關於此疾病的病程研究多以小鼠作為模型動物,然而小鼠與人類親緣關係較遠,以小鼠作為研究模型時無法完整呈現人類生病時的病況進展。中國暨南大學與美國埃默里大學(Emory University)醫學院合作,利用基因編輯(CRISPR/Cas9)技術將亨丁頓舞蹈症的基因插入(knock in)豬體內,並順利以種系遺傳產生F1與F2子代的病豬,並且順利觀察到豬大腦中紋狀體變性與運動失調的症狀;藉由與人類更相近之大型動物病況觀察,更能夠幫助科學家們了解與探討疾病的完整變化與基因治療研究。【延伸閱讀】調控HMGA2基因表現能夠控制豬隻體型   除了亨丁頓舞蹈症,未來也許還可以藉由CRISPR-Cas9基因編輯技術開發阿茲海默症(Alzheimer's disease,AD)、帕金森氏症(Parkinson's disease,PD)或漸凍人症(Amyotrophic lateral sclerosis, ALS)的大型動物模型,或是藉由這些技術檢視開發基因治療的臨床測試應用性。   相關計畫得到廣東省高水準大學建設經費的資助,同時也得到國家自然科學基金委重大研究計畫和重點研究計畫、廣東省科技計畫的支持;相關研究則發表於<Cell>。

網站導覽
活動資訊
訂閱RSS
電子報訂閱