MENU iconMENU
主題專區
主題專區
2018/08/27
蜂蜜是由蜜蜂採得的花蜜釀製而成,味道香甜,自古便被當成食物或藥物使用。純蜂蜜深受民眾喜愛,市場價格極高,但蜂蜜產量經常不敷市場所需,因此常有不肖商人以人工香料、色素、糖水等混充至蜂蜜中販賣,使得市售蜂蜜的真偽問題一再困擾著消費者。   隨著微型感測技術發展以其人類對味覺辨識機制的認識提升,科學家開發出許多電子舌,內部包含敏感的信號收集端、電路系統與資訊分析端,用以模擬人的舌頭品嘗味道後的感官指標,並將其應用於各式食品與藥品的檢測系統。   為了更加快速且方便地辨別假蜜,西班牙瓦倫西亞理工大學(Universidad Politécnica de Valencia,UPV)的研究人員開發多階段脈衝伏安法(multistep pulse voltammetry)電子舌,搭配多變量統計(multivariate statistics)分析純蜂蜜(石楠、橙花和向日葵蜜)與純糖漿之間的差異,並在不到一個小時的時間內成功辨別摻入不同比例糖漿的假蜜。【延伸閱讀】生物性電子鼻幫助「聞」出腐敗味   只要做好參數調整,電子舌將能提供比起現有裝置更加快速、簡單且低成本的辨識功能。未來或許可利用電子舌進行大量的第一線產品或原料檢驗,少數辨識困難的樣本再利用其他技術進行更精細的分析,幫助檢驗人員或廠商把關消費者權益。   相關研究發表於<Food Control>
2018/08/24
氣候變遷衝擊原有的生態環境,是人類未來面臨最大的關鍵挑戰之一。為了調節大氣中溫室氣體的含量,減緩氣候變遷進程,人們逐漸重視森林及海洋生態提供之碳捕捉與碳封存服務。其中位於熱帶與亞熱帶河口潮間帶附近,由水生木本植物組成的紅樹林(Mangrove)屬於「藍碳」的一種,因其豐富的生物多樣性,比起一般陸生森林的儲碳能力更高。   過去研究人員提供了各種推估紅樹林儲存藍碳的方法,但卻忽略了潮汐和河流對沿海的影響,因此降低了全球預測的準確性。而現在路易斯安那州立大學(Louisiana State University)海洋學和海岸科學系使用了地貌框架(ecogeomorphology framework)和CES (coastal environmental settings),針對世界各地紅樹林儲存的藍碳含量進行了更準確的估算,發現在加勒比和佛羅里達地區的石灰岩海岸的藍碳被低估了50%,且沿岸三角洲的藍碳被高估了86%,並為57個缺乏藍碳數據的國家提供了新的計算數據,有利於政府與土地開發者於事先規劃紅樹林附近的土地利用,並提升紅樹林提供的環境價值。【延伸閱讀】康乃爾大學科學家發現能對抗氣候變遷的新菌種   此項工作由美國國家科學基金會的Coastal SEES計畫、Earth Surface Dynamics、Louisiana Sea Grant College Program和National Council for Scientific and Technological Development(CAPES / CNPq)資助,該研究報告發表在美國生態學會的<Frontiers in Ecology and the Environment>。
2018/08/23
抗生素(antibiotic)是由微生物生合成的次級代謝物,能抑制其他微生物的生長,有利於其拓殖新棲地與競爭生長資源;人類則利用此特性作為醫療、農業、或食品等方面殺菌或制菌的藥劑。然而,抗生素大量使用卻造成細菌演化出多重抗藥性,使得人類逐漸無法抵抗病原性細菌的感染,因此各界均極力尋找新型抗生素以幫助解決抗藥性問題。   瑞士蘇黎世聯邦理工學院微生物學研究所(Institute of Microbiology, ETH Zurich) Julia Vorholt博士及其團隊利用植物界模式物種阿拉伯芥(Arabidopsis thaliana)作為研究材料,研究其葉圈(phyllosphere)上的微生物相(microbiota)組成。研究團隊發現,由於葉圈上的微生物為了有限的營養資源而彼此競爭,透過分泌抗生素或相關的次級代謝物抑制其他物種生長及繁殖,一旦競爭成功便佔據整個葉表,成為強勢菌群。另外,將葉表上的微生物相基因組進行定序,並利用生物資訊學分析其中細菌間的交互關係。透過生物資訊的研究發現約五萬個交互作用中有725個是與抑制性交互作用(inhibitory interactions)有關,其中Brevibacillus屬中的細菌Brevibacillus sp. Leaf 182抑制其他細菌的效果較佳。經純化次級代謝物並進行資料庫比對後發現了新的化合物,研究團隊將此化合物命名為macrobrevin,未來也將持續探討macrobrevin於醫療上的應用性。【延伸閱讀】叢枝菌根菌對大豆胞囊線蟲的抑制潛力   此研究是由瑞士國家科學基金會(Swiss National Science Foundation)贊助,相關資訊發表在<Nature Microbiology>。
2018/08/22
家庭園藝存在歷史悠久,最初僅作為農業生產的附屬,但近年來人們對食品安全與生活品質重視程度提高,家庭園藝又逐漸受到喜愛,並朝向多元化、精緻化的方向發展。此外,隨著經濟成長與都市化發展,城市人口逐漸增加,住宅越顯密集且高樓化,未來的生活空間將會更加擁擠,適當利用室內小型空間顯得更為重要。有鑑於此,美國萊斯大學(Rice University)開發出書架大小的生長箱,提供人們小型的室內種植環境。   2017年室內園藝在Garden Media Group的報告中被列為流行趨勢之一,顯示企業注意到人們對家庭園藝的興趣不斷擴大。密蘇里州立大學(Missouri State University)植物科學副教授Clydette Alsup-Egbers表示,造成室內植物死亡的最大原因是缺乏了解植物特性而過度澆水,若使用小型自動化系統調控生長環境,則能幫助不擅種植的人們經營室內園藝。而Aerogarden公司更是從2013年開始就販賣適合室內小空間的自動培養裝置—Harvest Elite,自2013年以來銷售額同比增長率超過20%。此種植設備使用LED燈板,具有調控光線、溫度和水量的功能,客戶可依其種植之植物需求選擇適當的種植模式,只需要每三週補充一次水箱即可。【延伸閱讀】有效減緩城市高溫的幾種作法   為了降低氣候影響及促進規模性生產,商業溫室早已實施自動化多年;然而長時間進行室內種植則可能使得植物特性發生改變,例如生菜脆度降低等情況,未來相關園藝設備仍需進行不斷試驗與改良,才能使室內種植更具發展性。
2018/08/17
美國的農業型態多為大規模、粗放式農業,高度機械化作業與單一化種植有利於農民管理與補足勞動力,但這樣的作業方式面臨病蟲害威脅時也容易造成巨大損失。隨著全球氣候變遷現象越加明顯,農民需要更加良好的風險預測與管理能力,才能維持每一季農產產量與品質。   美國的Ceres Imaging公司在小型無人機上搭載高分辨率的航拍設備與感測器,能夠經由低空拍攝以取得作物葉綠素含量、植株數量計算、樹冠層溫度等資訊,並經由分析計算,協助管理者了解植物蒸散作用狀況與需水量;此外,該系統也結合GPS(Global Positioning System)定位,透過電腦或其他智慧型裝置可提示異常狀況所出現於田間的確切位置。其優勢在於提前發現肉眼無法觀察到的狀況,避免潛在性的作物病蟲害持續擴大,使農民可快速對症下藥或進行其他處理,減少後續品質或產量之損失。   目前此項技術已使用在許多農場,成效良好。例如澳洲Century Orchards的杏仁園依靠此技術找出缺水與需要修剪的高度生長區域,經過調整灌溉系統後提升了20倍的投資報酬率;而位於加州的Terranova Ranch則利用其搭配的IOS應用程式比較植株健康狀況的差異,並用於評估不同區塊的收穫時間,每英畝增加約25萬噸的產量;另外此技術也幫助Evergreen FS提早發現玉米與大豆田間的Cercospora屬真菌病害,針對其精準施藥比起傳統施藥法高出了6倍的投資報酬率。【延伸閱讀】印度農業科技公司如何幫助應對氣候風險    Ceres Imaging使得農民不必購買重型設備,也無須在農地安裝各式硬體裝置,即可定期得到作物生長狀況的精確報告,提升了管理便利性與農民接受度,或許此類技術也將成為未來智慧農業趨勢之一。
2018/08/16
海洋覆蓋了約70%的地表,具有調節地球氣候功能,也吸收了四分之一因人類活動所排放的二氧化碳,幫助緩衝溫室氣體排放後的衍生效應;而大氣中的二氧化碳可微溶於水形成碳酸,因此當海洋吸收的二氧化碳越多,酸化程度也越發明顯。然而,在過去兩百年間海洋酸度增加了43%,逐漸影響海洋生態系統,包含珊瑚白化、魚類發育異常、甲殼類動物骨骼脆弱等現象;預計到西元2100年時,海洋酸度可能比現在高2.5倍。   為了探討海洋酸化對魚類所造成的影響,英國艾克斯特大學(University of Exeter)與葡萄牙阿爾加維大學(University of Algarve)合作,研究歐洲鱸魚(Dicentrarchus labrax)於酸性環境下所感應到氨基酸時的電生理活動與基因表現量變化。結果發現酸性環境會影響嗅球中的神經細胞突觸傳導,進而降低嗅覺的靈敏度,使其對某些氣味的反應改變,不易辨識出食物或掠食者的確切位置,但只要將魚類放回原有環境兩小時就可使此現象恢復。【延伸閱讀】放下草蝦王國的口號,面對臺灣蝦類養殖產業的未來   由於嗅覺是魚類的重要感官之一,許多海洋魚類依靠嗅覺尋找食物、配偶或感受周圍環境,若溫室氣體排放與海洋酸化依舊持續,預計到本世紀末海洋鱸魚嗅覺的靈敏度可能只剩現在的一半,使其生存與繁殖更加困難。相關文章發表於<Nature Climate Change>
2018/08/10
豬繁殖和呼吸障礙綜合症(porcine reproductive and respiratory syndrome, PRRS)俗稱藍耳病(blue-ear disease),是由藍耳病毒(porcine reproductive and respiratory syndrome virus, PRRSV)感染豬的巨噬細胞(macrophage)所引起的病症。豬隻體內局部的巨噬細胞會先受到感染,爾後再慢慢擴散至鄰近的淋巴腺,最後擴及肺部組織,造成呼吸道感染,母豬會因此患有嚴重的繁殖障礙,新生的豬仔若因染上此病,則會得到嚴重的肺炎。由於患病的豬隻通常伴隨著耳朵呈現藍色的病徵,因此俗稱藍耳病。藍耳病在美國及歐洲每年造成的經濟損失高達二十五億美元,創下單一病毒造成經濟動物最大損失的紀錄,若能使豬隻免於感染,將大幅的減少經濟損失。   藍耳病毒感染豬巨噬細胞是非常專一的過程,藍耳病毒感染巨噬細胞的過程中會透過受體媒介形式之胞吞作用(receptor-mediated endocytosis),被細胞膜上特定的受器蛋白CD163成功辨識後將藍耳病毒攝入胞內,病毒在胞內啟動複製程序並影響宿主細胞的代謝,導致宿主細胞的凋亡,複製成功後便透過同樣的方法感染下一個巨噬細胞,完成藍耳病毒的生活史。由此可知:藍耳病毒若無法專一辨識膜上受器蛋白CD163,將無法成功的感染宿主細胞。   英國愛丁堡大學羅斯林研究所(University of Edinburgh's Roslin Institute)的研究團隊利用有別於傳統將外來物種的基因轉殖到目標物種的基因改造(genetically modified)技術,以CRISPR/Cas9新興的基因編輯(gene editing)技術,將目標物種的基因CD163進行編輯,在不影響受器蛋白的主要功能下,研究團隊僅編輯一小段與藍耳病毒辨識有關的CD163序列,這樣的做法使研究的豬隻全數免於藍耳病之苦。雖然這技術被認為有別於基改技術且十分有效,但由於目前歐盟嚴格禁止基改農畜產品進入消費市場,因此應用這項技術進行編輯的豬肉是否有違法之虞,恐成為未來討論的重點。另外,基因編輯技術的農畜產品能否安全地被人們所食用,還有待後續實驗做進一步釐清。【延伸閱讀】中國利用基因編輯技術開發亨丁頓舞蹈症豬模型   本研究由英國生物科技及生命科學委員會動物衛生研究協會(BBSRC Animal Health Research Club)資助下完成研究,發表於知名病毒學期刊<Journal of Virology>。
2018/08/08
在新自由主義(neoliberalism)的推波助瀾下,全球農業逐漸朝向大規模、單一化、經濟化的模式推進,其中非洲綠色革命聯盟(The Alliance for a Green Revolution in Africa,AGRA)與非洲化肥與農業企業夥伴關係協會(African Fertilizer and Agribusiness Partnership,AFAP)也因應而生。在國際農業巨頭公司遊說下,非洲多國政府順應其邏輯推動農業管理政策,鼓勵農民邁向現代化農業。   在此同時,規模小、資源少的地方小農由於缺乏風險管理與預警經驗,比起經濟化農場更容易受到氣候與病蟲害影響。為了增加農民因應農業災害的時間,提升風險管理能力,Techno Brain公司與微軟合作,在非洲推出數位農業平台,以全球定位系統(Global Positioning System,GPS)標示農場位置,可搭配氣候預測、土地管理、作物與土壤調查等其他用途,以有效幫助農民提高產量與增加收入。目前此項系統已和印度政府及企業合作,而現在也正在向馬拉威、坦尚尼亞等非洲國家擴展,農民可通過簡訊和語音服務,從雲端獲得最佳播種時間、害蟲生長警報、天氣通知、建議收穫時間、市場資訊和農業技巧等訊息。【延伸閱讀】JA全農增加Z-GIS農業經營管理系統的資訊共享功能   Techno Brain是非洲第一家通過CMMI 能力成熟度整合模式(Capability Maturity Model Integrated) level-5的公司,其與微軟在雲端智慧和精準農業運用之結合,能強化非洲地區農業的智慧化進程。而撒哈拉沙漠以南地區的小農與依靠天然雨水灌溉的「雨養農業」佔據90%,若能適當利用相關地理與農業資訊,則未來潛力無限。
2018/08/06
北美大陸棚(North American continental shelf)具有豐富的海洋生態,是全球最具高生產力的魚場之一。近年來受到全球氣溫上升之影響,海洋暖化可能導致物種棲息地產生變化,因此羅格斯大學(Rutgers University)針對美國與加拿大沿岸大陸棚的底拖網捕撈生物狀況進行長期調查,包含303個太平洋沿岸物種及383個大西洋沿岸物種,其中有硬骨魚、軟骨魚、甲殼類動物、頭足類生物、棘皮動物、其他無脊椎動物與一種海龜,並利用電腦模擬在16種氣候預測模型中,未來(2081-2100)年這些物種的遷徙距離與遷移方向。   結果顯示,海洋暖化會使得原本處在溫帶的物種逐漸北移,而西海岸的溫度變化梯度比東海岸低得多,因此就長期而言,該地區的物種分布相對穩定。研究人員指出,受暖化影響最嚴重的物種是太平洋石斑魚,大西洋鱈魚和黑海鱸魚,由於物種遷徙距離較遠,使得捕撈漁業需要耗費更多時間和航運成本。而16個氣候預測模型中針對高碳排放的模擬結果顯示,物種棲息地變化較低碳排放結果高出兩到三倍。【延伸閱讀】研究發現氣溫將影響微生物碳排放的多寡   此研究強調全球暖化程度對本世紀末海洋生物資源變化幅度的重要性,海洋物種對溫度變化的反應非常敏感,因此溫度呈小幅度上升就可能對預測結果產生重大影響;相關研究結果也可以提供風險管理機關作為參考,預先考量未來區域間的資源分配與轉移。   該研究由美國國家海洋與大氣管理局(National Oceanic and Atmospheric Administration,NOAA)和皮尤慈善信託基金會(Pew Charitable Trusts)贊助,結果發表於<PLOS ONE>。
2018/08/02
橄欖是義大利主要的經濟作物之一,也是橄欖油製造的重要來源;但近年來義大利南部地區的橄欖樹受到細菌Xylella fastidiosa影響,使得橄欖產量與品質下降,對於其農業經濟產生嚴重危害。X. fastidiosa是一種植物病原細菌,經過媒介昆蟲入侵植物後會逐漸堵塞其木質部,使得寄主體內水分運輸受阻,造成植株脫水、葉片黃化、焦枯、萎凋甚至死亡等徵狀。此種病原長期於美洲地區肆虐,可感染葡萄、梨樹、柑橘、夾竹桃等超過350種園藝作物,並且已擴散到歐洲與亞洲多個國家,我國也有許多作物感染案例。   有鑑於現今全球農業貿易之發達,及早發現並預防病害向外擴散是至關重要的課題。然而,病原感染植株後具有潛伏期,農民無法光從外觀評斷作物是否受到感染,因此常忽略及早剃除病株的黃金時間,而媒介昆蟲在此期間也不斷來回於健株與病株間,等到病徵明顯時已無法挽救產量損失。   為了幫助農民及早發現病害,歐盟聯合研究中心(Joint Research Centre,JRC)的研究團隊利用機載成像光譜儀(Airborne Imaging Spectrometer,AIS)與熱成像(thermography)拍攝橄欖樹影像,此種裝置能捕捉可見光至紅外光區段的光線,分辨率為40-60公分,搭配人工智慧進行分析,可判讀光合作用之旺盛程度,例如,蒸散作用較弱的植株溫度較高。【延伸閱讀】Smart Ag發布第一款無人駕駛機械平台   該團隊於兩年間拍攝了15個區域中的七千多棵橄欖樹,部分橄欖樹叢透過此種方法所得之判斷準確率可超過90%,因此適合在田間大範圍進行即時監測;以往1000公頃面積需要經過三個月的人工檢測,現在只需要一架無人機即可於一小時內完成。未來推廣至西班牙的杏林,與馬約卡島(Mallorca)的葡萄園,相關研究發表於<Nature Plants>。
2018/07/30
一般而言,植物透過外界環境刺激,藉由水分變化進行膨壓運動或激素進行生長運動,以捕捉日光、水分或其他生長所需營養,例如向日葵的向光性、氣孔開闔與毛氈苔的捕蟲運動。然而,植物的移動較為被動與緩慢,植物根部的固著性使其無法像動物一樣,根據環境的即時狀況而移動至所需生長要素面前,在劇烈變動的環境下較容易因適應不良而死亡。   有鑒於此,中國的Vincross公司提出結合機器人與植物的想法,製作出可自主移動的六足機器人—HEXA,具有良好的移動與穩定功能,前方則搭載720p攝影機、測距感測器、三軸加速度計、紅外線發射器,幫助機器人「看見」前方狀況與跨越障礙。將盆栽結合機器人,就能實現植物自行即時移動的目標,幫助植物「走出」陰影與「躲避」烈日,而人們則可透過手機應用程式遠端操控機器人,或藉由MIND系統及HEXA simulator自由控制與設計機器人的動作,並上傳分享或下載其他人所編排的程式,使機器人動作更為複雜與擬人化。【延伸閱讀】沿著抹香鯨的表面移動的小型機器人    透過該機器人的發明,能夠增進植物移動的自主性及植物與人類間的互動性,未來或許可增加偵測水分或二氧化碳之感測器,或將相關技術應用於園藝領域中,減少人們於居家照顧大量植物的麻煩。
2018/07/27
德國每年有近2億立方公尺的液態糞便從畜牧養殖場流向環境,這些來自於動物的排泄物含有大量植物所需之磷與氮等元素,可作為土壤中的養分,有助於植物生長;但過多的養分反而導致土壤中微生物大量將銨態氮轉化成硝酸鹽,順著土壤緩慢滲透與汙染地下水。善用養殖動物所產生之代謝副產物可幫助減少其對鄰近地區的汙染,然而養殖場所與一般農田所處的位置並不相近,如何適當處理動物所產生的代謝副產物並轉移至農田是目前所面臨的問題。   德國蘇伊士公司與斯圖加特大學(Universität Stuttgart)弗勞恩霍夫界面工程與生物技術研究所(Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB)合作,設計出BioEcoSIM液體糞肥處理工法,首先確認磷完全溶解於液體中,利用兩段式過濾進行固液分離,再使用封閉系統中的高熱蒸氣幫助固體糞脫水乾燥,這些乾燥後的有機質可在450℃的高溫下轉化為有機生物碳;而液體部分則包含可溶性的無機鹽份,藉由化學沉澱反應產生磷酸銨鎂、磷酸鎂或磷酸鈣,再過濾回收液體中的磷,剩餘液體的則依靠薄膜蒸餾(membrane distillation)技術形成硫酸銨,最後水中只剩下微量的磷、氮及豐富的鉀,可回歸田間做為灌溉之用。【延伸閱讀】檸檬綠色經濟學   此技術可以將原本的動物糞肥回收形成有機土壤改良劑、銨態氮肥和磷酸鹽肥料等產物,不但運送更加方便,也能精確計算肥料的回收率。目前已經獲得專利技術許可,未來逐步在全國設立大型回收工廠,完成規模化與商業化進程;現今Zorbau具有一個試驗處理廠,工廠可用10立方公尺的原料,每小時生產100公斤的磷肥、100公斤的氮肥和900公斤的有機物。另一方面,通過養分回收能降低國內對進口肥料的依賴性,提升人類農業行為的永續性。    BioEcoSIM計畫由2012年10月至2016年12月的第七屆歐盟研究框架計劃資助(the 7th EU Research Framework Program),相關資訊公布於2018年5月14日至18日於慕尼黑的IFAT2018展會。

網站導覽
活動資訊
訂閱RSS
電子報訂閱