MENU iconMENU
主題專區
主題專區
2018/12/24
氣候智慧型農業為解決氣候變遷造成農業生產方面之衝擊,而在農業經營管理上做出之調整與建議,發展適地適種的方法,將可視種植作物種類與適當的栽培管理方式,在短時間便可獲得較佳的收入。
2018/12/20
以菸草鑲嵌病毒做為表現載體,轉殖後的煙草鑲嵌病毒感染菸草,再將表現的蛋白質純化後獲得抗真菌蛋白。經實驗證實,該表現系統生產的蛋白質產物能成功抑制番茄灰黴病。
2018/12/17
乾旱與缺水,將嚴重衝擊主要糧食作物生產,各國政府一旦面臨區域性或全球性糧食危機,將直接或間接導致糧食安全問題,運用模式模擬的方法,預測特定農作物於將來短期內或長期間的產量變化,並提供必要之災害預防建議,亦是各個政策擬定者決策參考的依據及手段。
2018/12/11
新興資通訊科技(ICT)已在各行業中普遍運用,也有越來越多農民透過資通訊技術,含括穀物種植業、牛羊養殖業、乳製品行業及種植蔬果業,輔佐糧食及作物生產,提生農產量與產值。
2018/12/10
大西洋鮭(Salmo salar, Atlantic salmon)的營養價值高、肉質口感佳,因此深受廣大消費者喜愛,在魚市中具有高商業價值。市售的大西洋鮭多以人工繁殖方式大量養殖,其中著名的養殖國家有北歐挪威及南美智利等國,也是臺灣進口大西洋鮭的主要來源。大西洋鮭是卵生魚類,雌魚體積一般而言較雄魚大,可儲備產卵時所必須的能量。雌魚懷孕後會季節性洄游至河川上游產卵,孵化後的鮭魚長到適當的體長後,會隨河川順流至下游的海洋中,性成熟的鮭魚於交配後又會洄游至上游原生地產卵,完成其生活史。雖然現在多以人工繁殖的方式養殖大西洋鮭,但野生鮭魚多為生態系中的環境指標物種(indicator)及關鍵種(keystone species),在當地食物鏈中扮演重要的角色,長期監控鮭魚族群的動態,將有助於保育政策及漁業政策之擬訂。芬蘭赫爾辛基大學(University of Helsinki, Finland)、芬蘭自然資源研究院(Natural Resources Institute Finland)與芬蘭圖爾庫大學(University of Turku, Finland)的聯合研究團隊研究後發現,自1970年代調查以來近40年的時間裡,塔納河流域大西洋鮭的重量與體積正在逐年縮減中,這樣的現象也反映在該族群的基因中。   過去的追蹤發現,生活在塔納河流域的大西洋鮭,其性成熟年齡愈趨年輕化,早熟的鮭魚相較於晚熟的鮭魚而言,有著體長較短、體重較輕的特徵,且通常雄魚較雌魚早熟。進一步研究發現性成熟特徵與基因Vgll3的遺傳型式有關。研究人員於Vgll3的基因座(locus)上發現多個遺傳變異,研究團隊將這些遺傳變異分成兩種不同型式的等位基因(又稱對偶基因,allele),並證實其中一個等位基因型式可反映出早熟且體積小、另一個型式則反映出晚熟且體積大的兩種特徵。研究發現成魚尺寸與性成熟年齡隨著年代發生變化的現象,皆反映在其調控基因Vgll3上。研究顯示鮭魚形態特徵的改變並非僅是單純隨環境變化而發生表型可塑性(phenotypic plasticity),而是基因型改變造成遺傳變異,進而產生表型特徵的改變。遺傳特徵隨世代產生變異,這意味著演化正在發生,原有的特徵因生存環境發生變化,逐漸演化成為新的特徵,以適應新的環境變化。研究也發現,大西洋鮭魚族群在短時間內快速地產生遺傳變異,多呈現在雄魚的外表形態及遺傳上,這顯示天擇(natural selection)可能僅作用在特定性別的個體上,產生性別衝突(sexual conflict)的現象。【延伸閱讀】以eDNA追蹤瀕危魚種   這項由芬蘭聯合研究團隊發現的重要成果已於今年10月已發表在<Nature Ecology & Evolution>,相關研究或許能在演化學、族群監控、漁業永續等領域加以應用。研究團隊也希望能在未來找出改變族群遺傳結構的關鍵環境因子,並盡可能防止其影響擴大。
2018/12/07
美國堪薩斯州立大學通訊與農業教育學系的研究團隊選定活體園藝作物的網路消費模式做為主題進行研究,研究團隊選定美國亞馬遜(Amazon)、eBay等著名電子商務公司進行探討。研究發現園藝產品在網路市場的接受度並非如一般商品一樣好,為此研究團隊將消費模式分成買方、賣方及販售平台等幾個主要層面進行探討。
2018/12/06
美國愛荷華州立大學利用高品質3D數位化模型描繪植物構造,建置3種禾本科的花卉模組。此項技術包含光學顯微鏡拍攝植物薄層切片及利用電腦輔助設計軟體,將2D影像轉換置3D模型重現並可在3D模組動畫中觀看。
2018/12/05
自然保護區的劃設,除減少人為直接影響外,赫爾辛基大學芬蘭自然史博物館的研究團隊經過長期觀察下,發現當全球面臨氣候變遷的衝擊時,自然保護區的劃設對於保護區境內鳥類物種多樣性帶來正面的影響,達到物種保育之目的。
2018/12/04
由於世界人口增加、耕地面積減少、氣候變遷加劇與自然資源有限等原因,向外太空發展農業似乎是一種可行的想法;然而,植物已在地球上經過長期演化,早已適應地球的特殊環境。太空中的重力特性和土壤營養皆與地球上有所不同,欲發展農業則需透過科技技術尋求解決之道。   菌根是一種真菌與植物互利共生的構造,真菌的菌絲比植物的根更細,可幫助植物吸收水分與礦物質,而植物則可供給真菌所需的醣類和脂質,在營養缺乏的環境中,這樣的構造更能幫助植株生長與促進健康。獨腳金內酯(strigolactone, SL)是一種常見的植物激素,在調節植物根與芽之萌發與刺激菌根中菌絲生長具有重要角色。瑞士蘇黎世大學(Universität Zürich)則利用此一特性,測試真菌Rhizophagus irregularis在模擬微重力環境下,於茄科模式植物—矮牽牛(Petunia hybrid)產生的菌根化現象。   由於真菌體內具有重力感受器,因此微重力條件對菌絲發育具有負面影響。而SL生合成和運輸會受到營養缺乏的條件誘導,而植物中的PDR1基因能夠改變的SL運輸效率。透過模擬得知,在微重力環境下,PDR1基因過度表現的矮牽牛仍然可生成較多的菌根。顯示藉由調控基因表現而誘導植物激素產生,並進一步引導菌根生成,或許有利於茄科植物在太空站或其他星球上生長;未來進行植物太空研究時,或可選擇生成較多SL的植物培養與耕作。【延伸閱讀】農桿菌之應用協助人們了解植物繁衍背後之遺傳機制    相關研究發表於< Nature Microgravity >
2018/11/30
草原生態系主要分布於溫帶地區,約占陸域面積的40%,部分地區為放牧業主要的經營場域。由於放養牲畜主要以草本植物為主要進食來源,草原品質與數量將對產乳量及牲畜肉質產生重大影響,為此即時掌控草本植物的生長狀況並改善牧場經營管理方式,以提供經濟效益高且營養價值高的牧草,將是發展永續健全放牧業的重要關鍵之一。英國諾丁漢大學生物科學院(School of Biosciences, University of Nottingham, UK)的研究發現,草原植物的生長高度或許是影響放牧產業的關鍵。   研究團隊先將草原類型分成6類,每類皆紀錄(1)草原類型、(2)土壤型態、(3)優勢植群組成、(4)施肥狀況及(5)牲畜種類共5種因子。有別於傳統現場採集樣本,送至實驗室以昂貴儀器檢測且曠時廢日的做法,研究團隊改以相對快速且經濟的近紅外光譜儀(near-infrared spectroscopy, NIRS)進行現場採集並即時分析,檢測植物體中影響牲畜健康相當重要的指標,例如粗蛋白(crude protein)、酸洗纖維(acid detergent fiber, ADF)、中洗纖維(neutral detergent fiber, NDF)、水溶性碳水化合物(water soluble carbohydrate, WSC)、灰分(ash)、可消化有機質(digestible organic matter, DOMD),這些均為反芻動物營養學中影響消化與吸收的重要影響因子。近紅外光譜儀能分析植物體吸收與反射特定波段量多寡的差異,藉此推論植物體內營養組成比例。研究發現植株高及植被覆蓋率是整個草原是否適合放牧的主要因素。研究顯示若株高低於7公分,植物體大多僅剩營養組成比例較低的組織,這將使動物的營養吸收受限。【延伸閱讀】美國康乃爾大學推出最新的葡萄品種—Everest Seedless   該研究於今年11月發表在<Frontiers in Sustainable Food Systems>期刊。這項研究成果與實驗方法可供牧場經營管理參考之用,除確保畜產供應不虞匱乏外,更達到牧場永續經營之目的。
2018/11/28
美國農業部(United States Department of Agriculture, USDA)於11月13日在華府發表e-連結(e-Connectivity)先導型計畫,預計未來在美國農村投入大量基礎通訊建設,建立農村與都市之間的數位網絡。由於寬頻網路是現代人獲取資訊重要的推手,2018年美國聯邦通訊委員會(Federal Communications Commission, FCC)針對農村地區使用網路情況的調查發現,現今仍舊有80%的大眾無法擁有可靠、可負擔及方便快速的網路。為此,美國農業部積極在全國各地農村投入寬頻基礎建設,盼能替傳統農村注入新科技的意象,藉此增加區域經濟及提高經濟發展的可能性。   美國參議院在2017年通過農業及農村發展的相關法案,成立農業及繁榮農村跨部會專案辦公室(Interagency Task Force on Agriculture and Rural Prosperity),盼能透過整合聯邦與各州政府之意見及資源,擬定包含建設e-連結(e-Connectivity)、改善生活品質(Improving Quality of Life)、提升農村勞動力(Supporting a Rural Workforce)、注入科技新意象(Harnessing Technological Innovation)及建設經濟發展(Economic Development)等措施,藉由透過新政策的規劃,提高農村的經濟發展與增加與都市的連結。   目前美國農業部透過電信計畫(Telecommunications Programs)提供19個專案計畫,共在美國12個州的農村地區投入9,100萬美金,提供許多經濟發展及建設的機會。這些基礎建設包含光纖寬頻系統的架設、升級現有DSL技術、升級無線通訊系統等。美國農業部希望藉農村寬頻基礎建設的設置,帶動現在及未來的區域經濟、促進商業發展、串聯農村地區的公共設施。   e-連結先導型計畫僅是美國川普當局繁榮農村的第一步,在建構互通有無的資訊網絡後,便可實現: 改善生活品質計畫、 提升農村勞動力計畫、 注入科技新意象計畫及 經濟發展建設計畫,為未來美國農村的經濟發展,注入一劑強心針。【延伸閱讀】現有家禽相關創新技術盤點   無獨有偶的是,我國近年來亦致力發展智慧科技農業,盼導入人工智慧/資通訊技術、農業生物科技及物流保鮮應用等元素,提升農產業各方發展。美國e-連結及延續計畫,或許可做為我國農業政策擬定及發展策略上重要參考依據。
2018/11/20
Teapasar是新加坡的是一個初創的線上茶葉市集,於2018年9月推出,其中運用創新思維模式的兩種服務工具-ProfilePrint和TasteMap,可透過科學方式敘述茶葉特性及客戶偏好,並提供最接近客戶需求的茶葉品項。   ProfilePrint利用氣體色譜法與質譜儀(Gas chromatography–mass spectrometry, GC/MS)創造了茶的代謝物指紋圖譜,可針對茶樣本的來源、風土、栽培品種、收穫日期和其他標識進行了分類,透過質譜儀與多變量統計分析方法,能在沒有標籤的情況下也能查出茶葉樣本的來源及合法性。目前也有利用以擴增片段長度多型性(Amplified Fragment Length Polymorphism, AFLP)或檢測p -coumaroysolglucosol-rhamnosylgalactoside以分析茶葉樣本的方法,但ProfilePrint可提供生物標記和基因譜分析以外,更加便宜的分析方式,簡化的氣相色譜儀售價僅為兩千美元。   TasteMap則通過線上用戶選取的八種口味偏好類別以區別消費者,包括甜味、豐富度和澀味等,再依喜好推估茶品項和顧客之間的最佳配對,並以人工智慧與機器學習技術,通過反複試驗改進預測性能。由於TasteMap仰賴於大量數據量培訓,因此茶認證的實驗室利用超過一百萬個數據訓練樣本,以增進模型的預測能力。目前Teapasar已開始使用來自350種茶樣品的400個數據進行模型測試,隨著供應商和客戶的數量逐漸增加,機器學習的效果會更加優異。【延伸閱讀】草本茶正在全球流行中   Teapasar的創建提供了一個可擴展的業務平台,其建立基礎為新加坡國立大學(National University of Singapore, NUS)所提供的化學代謝物圖譜指紋辨識方面的專業知識,與新加坡科技研究局(Agency for Science, Technology and Research, A*STAR) 提供的機器學習算法和數據培訓,雖然目前規模較小,但代表著茶葉科學、生物技術、供應鏈整合和透明度等跨域技術的結合,可能性無限。

網站導覽
活動資訊
訂閱RSS
電子報訂閱