MENU iconMENU
主題專區
主題專區
2018/11/07
傳染性胃腸炎(Transmissible gastroenteritis)是高度傳染性的豬腸道病毒性疾病,由傳染性胃腸炎病毒(Transmissible gastroenteritis virus, TGEV)感染,主要病徵為嘔吐及下痢,造成嚴重脫水與腸細胞壞死,且2週齡以下的仔豬死亡率接近100%。由於TGEV屬於豬隻冠狀病毒的一種,新的冠狀病毒疾病的爆發是美國養豬業最關心的問題之一,需要透過科學技術找出解決良方。   過去的文獻指出,豬隻身上的ANPEP酶(amino peptidase N)會作為病毒感染時的受體,因此英國種畜公司Genus plc與美國密蘇里大學(University of Missouri)合作,通過CRISPR/Cas9基因編輯改造了負責製造ANPEP酶的基因,成功培育出對TGEV具有遺傳抗性的豬。【延伸閱讀】新興基因編輯技術使豬隻免於藍耳病之苦   此研究還嘗試確認編輯ANPEP是否會對豬流行性腹瀉病毒(Porcine epidemic diarrhea virus, PEDV)產生抗性,PEDV在2013年爆發時造成近700萬頭豬死亡。雖然缺乏ANPEP酶的豬仍會感染PEDV,但未來的研究或許可找出抵抗此種病毒的方式。   2015年時該團隊就以基因編輯培育出對豬呼吸與繁殖症候群(Pig Reprodutive and Respiratory Syndrome, PRRS)病毒產生抗性的豬隻,目標將這種生產抗病毒豬的方法商業化,改善動物健康和福祉,並減少畜牧業生產損失。目前Genus plc目前正在尋求FDA(美國食品藥品監督管理局)批准使用基因編輯技術根除PRRS病毒的威脅。
2018/11/01
植物可通過土壤中的養分和水分維持生命,故預測土壤中水分動態變化對農業或水資源管理具有重要意義。然而,利用電腦模型預測土壤濕度是一項具有挑戰性的任務,需要考量土壤質地、植被、氣候(包含日照、風、溫度、降水等)、地形等資訊,且模型開發、應用和分析方法也至關重要。大多數常見的水文模型都是根據回溯性資料(retrospective dataset)進行校正,且不考量氣候變化,進而假設降雨與徑流的固定關係;這樣的模型應用時會加深估計土壤濕度變化的不確定性,並產生較大的誤差。   美國國家航空暨太空總署於數前年發射GPM(Global Precipitation Measurement)和SMAP(Soil Moisture Active Passive, SMAP)衛星,可幫助進行全球性的降水觀察,通過良好的模型預測,能夠幫助增進農業效率。而韓國慶北大學(Kyungpook National University)與美國德克薩斯州A&M大學(Texas A&M University)合作,通過結合隨機隱馬爾可夫模型(Hidden Markov Model, HMM)與遺傳演算法(genetic algorithm, GA),提出了一種新型演算法,可幫助校正不同時空下的衛星數據與驗證其他水文科學研究。【延伸閱讀】農業先進大國荷蘭將邁向新的挑戰—應用宇宙衛星預測作物生產   GA屬於一種進化演算法,而HMM則幫助調整模型所需的輸入參數,使預測結果更加符合實際情形。此演算法在美國愛荷華州和伊利諾州進行測試,與過去文獻提出的SWAP(Soil-Water-Atmosphere-Plant)-GA方法相比,更提高預測的準確性。   此研究為隨機模型的首次應用,並開拓了使用衛星數據預測土壤水分動態變化的方法。雖在預測每日水分變化仍具有技術上的侷限性,但可進行較大空間與時間尺度的土壤溼度預測,並根據氣候變化進行調整,且只需使用現有氣象站的降水數據;不但簡化了參數輸入與模型結構,更縮小了預測的錯誤性。可協助氣候變遷影響下,未來的農業及水資源管理效率提升。
2018/10/31
世界上大約四分之一的海產來自於底拖網捕撈(bottom trawling)而得,產量約為1900萬噸,底拖網是捕魚船上的大型捕撈工具,捕撈時沿著海床將不同種類、體型的漁獲一網打盡,雖然可以一次取得大量收穫,但也會一併帶走經濟價值低的小型生物,這些小型生物通常面臨丟棄或是死亡的命運,久而久之將不利於海洋生態。此外,底拖網的使用特性容易對底棲性生物及海底生態造成傷害,過去科學家們一致認為過度使用底拖網會影響海洋永續發展,但卻無法準確衡量影響範圍及危害程度。   絕大多數拖網捕撈發生在沿岸大陸棚和大陸斜坡的深度範圍中,但過往資料供的空間尺度較大,無法精細判斷拖網空間與足跡分布狀況。現今有一項跨國研究,使用高解析度衛星漁船監控系統(vessel monitoring system, VMS)與航海日誌計算底拖網足跡,針對非洲、歐洲、美洲及澳洲沿岸的24個區域進行數據分析,發現在780萬平方公里研究範圍的海洋區域中,底拖網捕撈範圍涵蓋了14%,但各地區的底拖網足跡存在極大差異。例如,智利南部僅有0.4%的海底遭受底拖網捕撈,而亞得里亞海則有80%以上。此外,在澳洲和紐西蘭海域以及北太平洋阿留申群島、東白令海和阿拉斯加灣海域,拖網佔地面積不到10%,但在部分歐洲海域超過50%。採用拖網的商業捕撈區域若達成公認的永續性捕撈標準,其拖網足跡通常較小。當底拖網捕撈面積低於10%時,底棲魚類捕撈率可達到永續性基準,但當面積超過20%時,維持永續性就有難度。   此研究中採用了捕撈船隊使用漁具的相關資訊,所提出的足跡估計值也比過往文獻描述更為準確。雖然部分地區(如東南亞)因缺乏詳細的捕撈數據而未被納入研究中,但此論文涵蓋了目前為止全球拖網捕撈狀況最詳盡的資訊,並提供了一種估算拖網捕撈足跡的方法,其中包含漁具尺寸、船速和拖網總時數等,進行較為合理的估計。【延伸閱讀】將作物空照圖轉為植物生長健康即時指標的應用程式   相關參與人員來自美國華盛頓大學(University of Washington)、羅德島大學(University of Rhode Island)、美國海洋暨大氣總署(National Oceanic and Atmospheric Administration, NOAA)阿拉斯加漁業科學中心、澳洲聯邦科學與工業研究組織(Commonwealth Scientific and Industrial Research Organisation, CSIRO)、荷蘭瓦赫寧根海洋研究中心(Wageningen UR)、阿根廷巴塔哥尼亞中心(Centro Nacional Patagónico)、英國班戈大學(Bangor University)和海洋管理委員會(Marine Stewardship Council)、芬蘭自然資源研究所等,論文發表於< Proceedings of the National Academy of Sciences of the United States of America (PNAS)>。
2018/10/30
薰衣草(Lavenders,為Lavandula屬,Lamiaceae科)為高經濟價值園藝植物,也是長期以來被廣泛運用的藥草,具有放鬆心情與輔助睡眠的效果,而精油(essential oils, EOs)也廣泛用於美妝、醫藥等產業。   為了更加了解植物精油的產生機制,加拿大的布洛克大學(Brock University)和英屬哥倫比亞大學(University of British Columbia)的研究學者對薰衣草進行基因組定序,並採用de novo draft genome assembly技術進行序列組裝,建立出第一個較為完整的薰衣草基因組草圖(draft genome),並找出精油產生的相關代謝途徑,藉由了解並控制這些基因表達的調控因子,就能生產人類所需成分的精油。   這些資訊可以幫助之後的人員開發各薰衣草品種的鑑定基因標記,或是研究如何利用基因和生物技術協助育種改良,減少薰衣草中的樟腦或提高芳樟醇及乙酸芳樟酯等成分,有利於提升薰衣草精油的市場價值。【延伸閱讀】藉由基因標記與分子育種技術,可加速耐鹽釀酒葡萄品系之開發時程   相關研究得到加拿大自然科學和工程研究委員會(Natural Sciences and Engineering Research Council of Canada)、加拿大研究主席計劃(Canada Research Chair Program)和卑詩省農業基金會(Investment Agriculture Foundation of B.C.)的資助,結果發表於<Planta>。
2018/10/25
在非洲撒哈拉沙漠以南地區,絲狀黴漿菌(Mycoplasma mycoides subsp. Mycoides,Mmm)感染山羊、乳牛等許多畜牧動物,導致傳染性牛胸膜肺炎(contagious bovine pleuropneumonia或稱lung plague)等疾病產生。目前此疾病依然難以控制,每年造成超過6,000萬美元的損失,並影響2,400萬生產者的生計。雖然受感染的動物可使用抗生素治療,但這些動物多數為非法來源,在惡劣的環境中容易導致治療無效和抗生素耐藥性等問題。   迄今為止,市場上只有一種活性減毒疫苗可以控制lung plague,將疫苗注射到牛的尾部,數週後就會開始產生相應的抗體。雖然疫苗效果很好,但其對溫度較為敏感,在非洲這種高溫地區,容易使得疫苗弱化或是變性,並可能導致接種後的動物產生發炎和潰瘍等免疫反應。   為尋求更好的解決方式,加拿大薩克其萬大學(University of Saskatchewan)通過加拿大國際糧食安全研究基金(Canadian International Food Security Research Fund,CIFSRF)申請並獲得了國際發展研究中心(International Development Research Centre,IDRC)和加拿大全球事務部(Global Affairs Canada)的資助,與肯亞的研究人員合作以開發新的疫苗。   不同於使用傳統疫苗開發方式,研究團隊使用反向疫苗學(reverse vaccinology)開發新型疫苗,利用程式分析細菌基因並找出最可能導致牛產生免疫反應的抗原,再製備與純化所選蛋白質,與佐劑混合測試。在鑑定的66種Mmm蛋白中,有四種可保護牛隻免受侵害。【延伸閱讀】血液檢驗將有利於促進乳牛健康   這種新型疫苗使用肯亞各種Mmm菌株的蛋白質抗原,生產成本更低,且於室溫更加穩定,現今已獲得肯亞疫苗生產商的許可並進行生產,預計將進行田間試驗。反向疫苗學已被用於目前市場上的人類腦膜炎球菌疫苗,未來也可用於開發其他重要動物疾病的疫苗,抵抗結核病菌、黴漿菌、大腸桿菌的感染。
2018/10/24
穀類富含大量的碳水化合物,自古便做為人們的主食,雖可供溫飽,但人體仍需額外攝取其他維生素或礦物質等元素,如:鐵、鈣、維生素A及B群等,才能進行正常生理代謝。美國農業部農業研究局(USDA Agricultural Research Service)的研究人員Robert Graybosch博士表示:食物中營養素不足或內部所含反營養物質(antinutrients)會干擾人們對營養素的攝取,根據統計,全球約60%的人並未攝取足夠的鐵質。   透過額外添加維生素或礦物質於食物中提升營養價值的手段,稱作食品營養強化(fortification),可幫助補充人體所需養分。傳統的食品營養強化方式為食品添加劑,例如食鹽中適當添加碘可防止甲狀腺腫大。隨著生物技術不斷進步,若能在作物生長的過程中,利用遺傳育種或基因工程等方式,使植物自行生合成特定維生素或礦物質,強化食品本身營養素的方式,則稱作生物營養強化(biofortification)。   以稻米為例,稻米在部分貧困地區是窮人賴以維生的主食,但其中維生素A含量少,貧民在長期只食用稻米的情況下容易缺乏維生素A,使得免疫力下降與疾病產生。經基因工程技術,科學家成功培育富含維生素A的黃金米,提供更有效攝取維生素A的途徑,此為透過基因改良方式達到生物營養強化的案例之一。   Robert Graybosch及其研究團隊以小麥(Triticum aestivum, common wheat)作為研究材料,希望在不減少產量的前提下,探討影響穀物蛋白含量(grain protein content)的Gpc-B1基因與低榖植酸(low grain phytate)的 lpa1-1基因在小麥田間試驗中如何調控產物中的微量元素含量。結果表明,結合此兩種特性可以增加了人類從中獲得的鋅、鈣和錳等元素。【延伸閱讀】植物科學發現可能有助於治療過敏和免疫缺陷   雖然此研究結果有助於培養高蛋白含量、低穀植酸且單位面積產量不變的小麥品系,但植物基因表現容易受環境因素影響,因此在其他地區可依照這些研究結果調整小麥品系的育種背景方向,例如未來可改良北美大平原(Great Plains)的小麥,利用基因漸滲(introgression)的方式獲得生物營養強化的優良性狀,並在北美草原大量推廣種植。
2018/10/22
臺灣每年平均飼養3億多隻雞,其中會讓雞隻下痢、出血的球蟲病,因為病原體會存在糞便中難以清除,容易造成雞場雞隻重覆感染與腸道病原菌二次性感染,雞農常會使用抗生素、抗球蟲藥物進行防治,卻衍生出藥物殘留與抗藥性病原等問題,這幾年雞蛋屢被驗出不該使用的乃卡巴精便是一例。   中興大學獸醫學系特聘教授張力天發現可食性植生素咸豐草,可改善雞隻免疫系統,具有對抗球蟲病的功效,不僅如此,也可改善雞隻腸道菌相,改善蛋雞生產環境。目前市面上已有兩款飼料添加物上市,他努力讓這系列產品推向國際市場。  全球因球蟲病,產業年損20億   科技部去年推動「前瞻農業科技──新世代農業生物保護劑之開發」,希望解決產業問題,以推動安全健康農業。長年鑽研中草藥醫學研究及抗原蟲飼料添加物研發的中興大學獸醫學系特聘教授張力天,共提出「改善雞、豬腸道菌相的新穎性優質飼料」與「抗植物病原菌的綜效性微生物製劑」等三項研究計畫,希望開發可食性的植物性飼料添加物,取代抗生素濫用現象,改善禽畜產業的疾病問題。   十多年前,張力天因參與中研院農業生物科技研究中心研究員楊文欽團隊,透過動物實驗的研究,發現咸豐草具有改善糖尿病代謝疾病與抗食因性細菌的潛能,循著此線張力天和楊文欽進一步發現咸豐草應用在雞隻上,具有抗雞隻球蟲病的潛力,因此合力研發配方,在五年前奪得第十屆國家新創獎。   據農委會統計,臺灣去年飼養約3.3億隻雞,其中蛋雞約有1千7百萬隻,年產75億顆雞蛋。為了供應市場雞肉、蛋大量需求,雞隻長期被密集飼養,環境容易傳播病原菌,像雞隻球蟲病就是養雞產業非常普遍的一種疾病。   球蟲病一年四季都可能發生,其傳染途徑是當球蟲卵囊在適合的溫度、濕度和充足的氧氣下芽孢化後被雞隻食入,雞就會感染球蟲病。具感染力的卵囊在雞的腸道中釋放出芽胞子侵入破壞腸道上皮細胞,造成雞隻脫水、下痢、出血。小雞最快可在七天內死亡。而這些被感染的雞排出的糞便將帶有卵囊,卵囊再度芽孢化後還可繼續傳播,在環境中生生不息。   不僅如此,張力天指出球蟲病和瘧疾很像,在它還沒被殺滅前,會一直留在雞隻的腸道寄生,雞的腸道因為受傷,吃進去的飼料吸收效果都不好,間接影響飼料換肉率。每年全球家禽因球蟲病約損失20億美元。為了抵抗這疾病,雞農和蛋農通常會使用抗生素、抗球蟲藥物進行防治,但也衍生後續雞蛋殘留藥物、球蟲病產生抗藥性等問題。   放眼國際,張力天說,歐盟、東南亞、美國近年已陸續表態將禁用抗生素,而歐盟更直接明定2021年後不准在飼料裡投入化學性的驅蟲藥(緩衝期有三年),顯見研發非化學性的咸豐草製劑,將有助於未來全球家禽市場的發展。  透過侵入分解病原體,咸豐草讓雞更健康   臺灣常見的咸豐草主要有三種,分別是大花咸豐草、小花咸豐草和黃花咸豐草,而大花咸豐草是多年生草本植物。從外觀上判別,黃花咸豐草只有中間黃色管狀花,小花咸豐草和大花咸豐草黃花周圍則有白色的舌狀花瓣,但大花咸豐草的舌狀花瓣會比小花咸豐草還長。   經過多年研究,張力天發現,實驗動物吃下咸豐草飼料配方後,免疫系統的巨噬細胞會分泌酵素物質,把病原菌分解掉,讓細菌的散佈機制被瓦解,而不致發生發炎反應影響動物健康。   「簡單來說,它不是直接殺滅病原體,而是影響病原體侵入的方式來控制疾病。」張力天強調,由於球蟲菌株非常多種,他們針對不同球蟲菌株、甚至是有抗藥性的球蟲菌株做測試,發現咸豐草都有辦法抑制。   此外,張力天說,雞隻吃了咸豐草飼料配方還可改善腸道菌,使腸道菌壞菌減少;也可以改善飼育咸豐草飼料蛋雞的生產環境,減少因運輸保存過程產生的劣蛋、 汙染蛋比率。   張力天更做了咸豐草飼料配方產品的穩定性研究,「我們做了兩年的品管,從原料、加工、成品到倉儲都進行把關,平均每一個月進行抽樣檢查,發現在儲存和運輸上,這配方在4℃、室溫、40℃、高溫90℃和瞬間高溫130℃都沒問題,基本上每一個製程步驟都很完備。」   現階段和張力天合作,使用咸豐草飼料配方的蛋雞平均一年有20萬隻,白肉雞則約是10萬隻。看準2024年全球近130億美元的抗球蟲藥物及疫苗市場,張力天預計在今年底募資、成立公司,並首先鎖定東南亞市場,他希望這項抗球蟲的咸豐草飼料配方不僅能被臺灣產業界廣泛使用,更能走向國際,造福全球的家禽市場。 【相關資訊】 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院黃小姐,電話:03-5185151,信箱:1112047@mail.atri.org.tw
2018/10/19
漁業和水產養殖業是各地民眾重要的食物、營養和收入來源,自糧食革命與工業革命以來,世界上人口持續增加,對於水產品的需求量也連帶上升;然而捕撈漁業產量在20世紀80年代末開始相對停滯,故水產養殖業成為促進食用水產供應量大幅增長的主要驅動力。   亞洲是全球養殖漁業發展最興盛的地區,然而養殖業可能受到氣候變化影響,使得產量下降,加上極端天氣出現越加頻繁,水產養殖保險可保障漁民因天然災害產生的經濟損失。目前已有數種水產養殖保險可以降低經濟風險,但海水養殖可能因當地海水深度或物種耐溫能力等特殊因子,造就不同的產量差異,這也是實際評估所面臨的挑戰,保險實施則應納入評估魚獲價值以及累積環境數據的相關技術才能真正貼合生產者需求。【延伸閱讀】Holstein UK推出牛資料庫以增進可追溯性與遺傳價值   日本Umitron公司已開始在水產養殖領域使用物聯網與人工智慧技術,2017年開發的第一個產品UmiGarden可透過記錄魚群變化幫助漁民優化飼料配方。現在Umitron更擴大早期資金並啟動水產養殖保險數據服務,總額達到11,043,702美元,是aquatech早期創業公司籌集的最大金額。另外,自2018年8月起,開始使用物聯網和衛星遙感數據協助水產養殖保險服務,以評估和減輕與海洋環境和漁場營運的相關風險。
2018/10/16
microRNA(小分子核醣核酸)是真核生物中廣泛存在的短片段核糖核酸分子,可調節其他基因的表達,影響動物繁殖、代謝和免疫等功能,部分microRNA的表達具有組織特異性,可在血液檢查時作為疾病發生的潛在生物標誌。   長期以來,人類為了獲得更多產量,對乳牛的遺傳特性進行選擇,高產量乳牛是現今市場主流;然而,高產乳量除了需要耗費更多飼料外,也連帶使得牛隻容易患有乳腺炎、子宮感染或其他疾病。英國高達三分之一的乳牛受到疾病或繁殖障礙的影響,除了隱含的動物福利問題,也間接提升酪農成本。   英國愛丁堡大學(University of Edinburgh)和蘇格蘭農村學院(Scotland's Rural College,SRUC)研究發現,血漿中的microRNA 含量會隨著乳牛年齡、產乳量、乳腺炎指數、生育能力等產生變化。目前血液中microRNA含量已可以在實驗室中分析,用於評估組織變化,應用於人類疾病的診斷,或許可以使用簡單的血液檢測來預測乳牛的健康和生產力,將有利於乳製品行業並改善動物福利。【延伸閱讀】利用新型細胞株快速診斷非洲豬瘟   此項計畫由SRUC資助,相關研究發表於<Scientific Reports>,然而資料庫中的乳牛資訊較少,需要借助人類研究標靶做為參考,未來將持續開發改善動物福利和農場作業的應用性。
2018/10/05
漁業是人類歷史上規模最大,也最悠久的產業之一,自45,000年前採用人力捕魚到今日使用人工智慧、機械網和其他技術以提高漁船效率和海產品質,雖然增加了水產捕獲的數量,但仍舊無法達到最高的產業效率,許多自海中取得的產品仍舊浪費。然而,地球上人口持續增加,對水產品的需求也日益提升,海洋漁業需要改變現在非永續性的生產方式。   建立數位化供應鏈能透過大量數據分析建立供應計畫,善用科技串連供應鏈上下游的數據,除了可精準控制生產及庫存數量,倉儲成本、物流成本、門市缺貨風險等也將連帶下降,提高整體營運效率。然而全球漁業產業龐大,在分散的產品供應鏈中,不易達成數據共享的供應優勢。   為了解決大多數水產品供應鏈的碎片化的問題,Fishcoin的開發設計為點對點(peer-to-peer,P2P)網路,允許各行業關係人利用區塊鏈的共享機制,進而提升數據可信度、透明度和安全性。這種所有工具均開放使用且不依靠單個應用程式或中心行程的分散式系統就像是海星一般,稱為Starfish Protocol。Starfish Protocol是唯一與GSM協會(Groupe Speciale Mobile Association,GSMA)合作的區塊鏈項目,GSMA是世界上最大的電信公司協會,可能幫助其快速擴展至全球。【延伸閱讀】有朝一日泡泡無人機能協助農民為花朵授粉   使用Fishcoin除了可應用區塊鏈數據的共享機制,隨著使用者增加也會使得結構更加龐大,並且在漁民、進出口商等參與者輸入數據時提供獎勵-Fishcoin tokens,這樣具可擴展性的獎勵方式可增進漁民提供數據的主動性,進而促進漁業效率與永續性。
2018/10/02
1984年中國的家禽業向資本市場開放,建立了工業化的大規模養殖模式。肉雞因生長快速而受到青睞,並很快成為速食業的首選,但每年爆發的禽流感和過量使用抗生素的報導都讓消費者存有疑慮。此外,2013年的禽流感疫情導致家禽業損失高達400億元,使得中國政府擴大了對食品安全的監管措施,且隨著消費者越加注重從農場到餐桌的食安問題,中國家禽業正在引入高科技技術幫助創新。   中安科技於2017年6月推出GoGo Chicken計畫,主要通過數位科技與區塊鏈提升家禽產業鏈的透明度。GoGo Chicken將自由放養的家禽與監控技術結合,每隻雞腳踝上都戴著一條腳環,可用以計算每日踩踏步數、年齡甚至死亡時間,預先購買雞肉的消費者可以透過應用程式查看所有詳細資訊。現今養雞業繁殖的肉雞通常於40天左右就可屠宰,但GoGo Chicken計劃中的雞隻可存活166天,風味比普通肉雞更好。   中國是世界上最大的肉類消費國之一,佔2016年全球消費量的28%。消費者為了追求更好的食品安全保障,逐漸捨棄在傳統市場購買雞肉的作法,轉而尋求於國際超市或是當地農民直接購買商品。由於看見背後的潛在利潤,許多中國的科技公司也已將觸手伸進肉類和家禽產業,例如京東集團在2016年推出了一個稱為Running Chicken的類似計畫,同樣使用區塊鏈,而網易公司投入有機黑豬飼養也已進行八年多。然而,中國目前沒有任何全國性官方的自由放養或有機產品認證,表示消費者需要自行驗證供應商聲明是否真實。總體而言,中國家禽業的轉變與20世紀80年代的歐洲相似,只是此趨勢是受到食安影響,而非考量於環境與道德問題。【延伸閱讀】可擴散至全球海洋產業的數據生態系統   GoGo Chicken的另一個目標是幫助提高農村收入,中國中西部地區受到地形影響,農地大多破碎,不易進行大規模的一致性生產,但透過良好的放養管理模式,或許能在保護環境的同時提升村民收入。目前負責GoGo Chicken的中安科技子公司連模科技已在貴州、安徽、山東和河南省招募了合作農場,並進一步擴展到西南部山區,預計到2020年將招募3,000個農場,提升綠色養殖的永續性。
2018/10/01
日本人口高齡化程度嚴重,為了緩解農業勞動力不足的問題,近年來各界積極進行無人機輔助農業作業的開發研究,目的是緩和農民務農的身體負擔並增進生產力,以對抗數十年來農村出生率下降與人口外移的問題。無人機可能是未來的日本高齡化農村的主要勞動力來源。   近期新創公司Nileworks 開發的無人機Nile-T8與JA Miyagi Tome及Sumitomo Corp公司進行合作測試,自動無人機於水稻田間噴灑殺蟲劑,同時診斷植株生長狀況,快速分析稻稈並決定需要多少農藥或肥料,讓農民能輕鬆判斷田間投入之需求與估算作物規模。購買一般較大型無線電所控制的小型直升機搭配噴霧設備約需1,500萬日圓,無人機卻只需約400萬日圓左右就可購得,高科技應用能緩解農村社會在年輕人出走後所面臨的勞動力短缺。【延伸閱讀】藉由無人機技術應用,精準監測馬鈴薯種植過程之氮肥使用   目前Nileworks公司正與官方進行協商,期望能允許操作者不用證照就能控制無人機,且能利用iPad進行操作及運用繪圖軟體,最終目的是將水稻種植成本降低到現在的四分之一。Nileworks計畫於五月開始販售無人機,預計第一年以100架作為年度目標並於五年達成4,000架。其它無人機業者,如SkymatiX公司也與Mitsubishi Crop及Hitachi公司合作,將提供農用無人機服務。   現今人們對農業仍存有刻板印象,認為務農是骯髒且粗重的工作,透過科技逐漸促進農業現代化轉型,或許能有效轉換民眾的舊有觀念並吸引年輕人回歸。

網站導覽
活動資訊
訂閱RSS
電子報訂閱