MENU iconMENU
主題專區
主題專區
2018/11/19
荷蘭應用科學研究組織中心(The Netherlands Organization For Applied Scientific Research, TNO),開發能偵測土壤硝酸鹽含量並應用於監測氮礦化作用的感測器。氮對於植物生長發育與其體內蛋白質生產具有重要意義,ㄧ旦知道需要供給多少氮肥給土壤,農民就可以計算出最適合植物生長所需的肥料添加量。   目前TNO與瓦賀寧恩大學(Wageningen Universiteit)正執行ㄧ項名為DISAC(Data Intensive Smart Agrifood Chains)的計畫,此計畫與開發土壤硝酸鹽感測器相關,並與當地農業公司、科技公司及研究中心共同合作致力為精準農業研發新技術。   TNO所開發的感測器能頻繁偵測土壤中的硝酸鹽含量,提供最即時的數據。為了節省能源與數據儲存容量,研究人員每日進行量測並提供相關平均數值,藉由ㄧ系列的數據收集,能持續觀察土壤中氮礦化(nitrogen mineralization)的過程。迄今為止,所有結果皆為現場測試,未來將可於不同地點進行測量,並透過應用程式檢查數據結果。【延伸閱讀】英國土壤濕度感測器突破性進展,為智慧型灌溉鋪路   由於植物只能吸收銨態氮或硝酸態氮,因此植物生長與氮礦化程度具有相關性,藉由智慧化偵測系統提供土壤中氮含量指標,除了可協助農民了解土壤中的氮含量是否滿足植株所需,也可幫助觀察施肥後植物的利用狀況。   目前研究正於荷蘭的測試農場Dairy Campus- Vredepeel en KTC Zegveld進行測試。感測器安裝於距基座約15公分內的植株根系附近,而太陽能電源供應及相關設備則是安放於地面上。目標是利用模型與遠端偵測技術,了解預測和實際產量的差異性,以研究植物產量與其蛋白質含量,以及感測器如何實際應用於場域的方法。雖然目前仍尚未確定如何藉由此感測器優化現有的施肥機制,但這項研究有助於更瞭解植物的生長環境與氮礦化關係。
2018/11/16
eDNA又稱為環境DNA (environmental DNA),是生物遺留在環境中的遺傳跡證之一。多數研究利用追蹤生物遺留在環境中的DNA,推估特定環境中生物多樣性(biodiversity)及豐富度(abundance),透過eDNA的採樣將能達到族群現況評估及未來保育的目的。   美國馬里蘭大學環境科學中心(University of Maryland Center for Environmental Science)與史密森環境研究中心(Smithsonian Environmental Research Center)共同研究以eDNA追蹤美國馬里蘭州乞沙比克灣(Chesapeake Bay)中鯡魚的數量。鯡魚是北美地區傳統捕撈魚種,也是當地生態系食物網中許多掠食者主要的食物來源,該物種的族群大小對當地生態系平衡扮演重要的角色,但由於1970年代以來過度捕撈及產卵地被破壞下,現已成為受威脅物種,如何保育該物種成了當地機構研究的重點之一。   研究團隊藉由檢測水域中目標鯡魚遺留在環境的粒線體遺傳片段,並以即時聚合酶鏈式反應(qPCR)將特定片段擴增,以擴增的數值結果量化族群大小及鑑識魚種,藉此能有效評估不同鯡魚族群的豐富度及棲地利用程度,達到監控的目的。與傳統架設漁網捕撈相較下,採集eDNA以分子生物學的方式將大量節省人力及物力資源,即可獲得目標物種的遺傳資訊,推估物種可能的有效族群量及產卵地。研究團隊調查橫跨12處支流,在馬里蘭州境內196個地點採集水樣,發現境內的灰西鯡分布在東岸流域,而西岸已開發流域多為藍背西鯡。【延伸閱讀】藉探索海洋DNA一窺海底環境的奧秘   該研究是自1960年以來,首次在乞沙比克灣流域大規模採樣eDNA進行鯡魚物種及族群方面的生態研究。該研究成果已發表在PLOS ONE期刊,研究結果將有助於當地鯡魚捕撈計畫的擬定及規劃相關保育策略。
2018/11/13
動物受到吸血昆蟲叮咬後容易引發局部或全身的過敏與發炎反應,使用驅蟲劑可預防蚊蟲叮咬引發的不適感與疾病傳播。自1944年開發以來,敵避(diethyltoluamide, DEET)就被認為是在商業上最持久且有效的驅蟲劑,受到人們廣泛使用。然而,考量到此類人工合成藥劑可能威脅孕婦和嬰兒健康,故各界極力開發以天然植物來源為主的驅蟲劑,例如香茅、薰衣草、貓薄荷等,部分天然精油的驅蟲效果雖然良好,卻有持久性不佳之問題,若可找出天然、有效且持久的驅蟲劑,則更能減少衍生的健康風險。   椰子油是一種從成熟椰子中搾取的食用油,屬於富含飽和脂肪酸的天然植物性油脂,以豐富的月桂酸(lauric acid)和肉荳蔻酸(myristic acid)含量而聞名。美國農業部農業研究局(Agricultural Research Service, ARS)近期發表研究於Scientific Reports,證實特殊的椰子油的中鏈脂肪酸,對於多種昆蟲,例如蚊子、蜱蟲、虻和臭蟲等具有良好的驅蟲活性。在實驗室的生物測定中發現,這些脂肪酸能有效抵擋虻和臭蟲兩週,抵擋蜱蟲一週,與DEET相比之下效果更好。【延伸閱讀】椰子油可提升過氧化小體異常之果蠅壽命   作者Zhu提及,椰子油本身並非驅蟲劑,但衍生的油離脂肪酸混和物—月桂酸、癸酸(capric acid)及辛酸(caprylic acid)與其相應的甲基酯(methyl esters)對於吸血蚊蟲具有強烈的驅除性。將脂肪酸添加在含有澱粉的配方當中,能保護牛隻長達4天。除此之外還能驅除傳播茲卡病毒的埃及斑蚊,且效果比起其他的天然精油成效更佳,這些結果顯示,椰子油脂肪酸在防範蚊蟲叮咬人或動物的潛在應用性,未來或許畜牧業可利用此特性製作成低成本配方保護動物,作為人工合成藥劑的替代品。
2018/11/09
我國水產養殖轉型發展新契機 國立臺灣海洋大學水產養殖系  周信佑教授 壹、國際漁業情勢與未來隱憂   全球變遷是暖化、氣候變遷、海洋酸化、人為活動等作用的合成效應,其對人類生活甚至生存的影響,是近年全球科學研究最重要課題之一;而海洋擁有豐富且廣大的生物資源,長期以來做為人類的「第二糧倉」,除了提供一般人日常食用,全球更有約十億人口仰賴海洋生物,作為主要或唯一的蛋白質來源。然而海洋資源也受到氣候變遷、過度捕撈和海域污染等因素,漁獲量逐年減少並可能已經降至極限值。再加上石化能源的日漸短缺,農地因過度開發而流失等等問題,聯合國跨政府氣候變化專家小組提出警告,在2080年之前可能將會有數百萬計的人面臨糧食短缺的困境。   水產養殖漁業已被公認為海洋資源枯竭後可取代捕撈漁業的重要趨勢產業,是本世紀發展最快的食品生產行業之一。根據聯合國糧食及農業組織 (Food and Agriculture Organization of the United Nations,FAO) 年報, 2012年水產養殖產量已達6,660萬頓,為人類提供近一半的食用魚品。由於野生魚類捕撈產量持平,同時全球新興中產階級需求大幅上升,預計到2030年,水產養殖產量將占全世界食用魚供應量達62%。中國海洋大學麥康森院士在國際高峰論壇上呼籲「一畝海水十畝田」,請各國重視海洋以及水產養殖的潛力,因為未來水產生物科技的開發與應用,將成為21世紀解決人類動物性蛋白需求的重要方法,永續的水產養殖產業將為全球糧食安全和經濟增長做出持久貢獻。 貳、國內特色   臺灣為海島型國家,位處熱帶與溫帶交接之亞熱帶地區,加上特有的地形、水深、海流與水溫等多樣化的生態環境,使得週邊海域具有豐富多樣的魚類資源。在產官學的努力下,成就了臺灣水產養殖產業長年的榮景,從早期的草蝦王國到現今的石斑王國,臺灣的養殖技術始終具有國際領先的地位,不僅在農業發展上扮演重要之角色,更對經濟發展有卓著貢獻。面對全球變遷的嚴苛挑戰,必須先建立糧食供應風險分擔及減輕的機制,實行的策略可由水資源安全、分子育種、養殖技術、疾病防治與發展農業新科技等方向著手。同時善用海洋生物技術,轉化逆境為動力,優化單位產量、改善臺灣土地資源利用效率,努力邁向永續新農業經營的目標。 參、科技發展方向建議 一、水資源安全   水是生物體的重要組成也是地球生物賴以生存的重要成分之一,其對於人類生存與經濟活動扮演舉足輕重的角色。淡水除了維持人類身體機能所需外,也是提升生活品質以及促進農業經濟發展的要素,因此水資源為所有國家之必需品,其對經濟發展的影響與重要性和石油不相上下。雖然水資源佔據地球表面71%,但無法直接被人類使用的海水占了97.5%,只有約2.5%是以淡水形式存在。而這2.5%的淡水,分別又有1.72%存在於冰川、冰帽及高山的雪中,約0.76%存在於地下水中,確實被人類所利用的水資源含量不高。然而隨著全球人口的增加,未來水資源匱乏的問題只會更加嚴重。以2015年聯合國世界水資源開發報告表示,預估至2030年全球用水需求量將超過總供應量40%,這表示將會有29億人 (約48個國家) 會處於 「水資源缺乏」 (Water-Scarce,年人均用水1000至1700 m3) 或「水資源緊張」 (Water-Stressed,年人均用水少於1000 m3) 的國家。   以臺灣而言,即便降雨非常豐沛,但降雨時間及空間上的分配極度不均,降雨時間多集中於5−10月,豐水期和枯水期能保存之水量差異極為懸殊;再則是降雨地點多集中於山區,河流因地形特性大多短淺,無法大量蓄積水源。而過去所興建之水庫,也因為淤積嚴重而導致蓄水量大減;再加上全球氣候變遷,在近十年內臺灣曾多次面臨到嚴重的缺水問題。實際上,臺灣已經名列為全球第 18 的缺水地區。   因此,不論是解決臺灣切身的問題,或是迎合世界產業趨勢,水資源相關議題,包括海水淡化技術中除鹽、多功能裝置等都是未來重要的研究方向。Chavez-Crooker等針對智利北邊、靠近全球最乾旱的阿塔卡馬沙漠的海水淡化廠技術做了完整的概述並探討對環境的影響。經濟部水利署及臺灣自來水公司已經規劃在台南興建臺灣本島的首座海淡廠,如何降低對當地環境與資源的影響,將是再創未來水資源經濟發展契機的重要考量。 二、分子技術輔助育種   位於北歐的挪威,為維持鮭魚養殖產業發展的基礎與榮景,該國政府從產業根本問題切入,積極投入海水養殖鮭魚的育種研究,尤其是大西洋鮭魚品種改良已將近有40年歷史,是家喻戶曉的成功例子,除大力支持多項基礎研究與產學合作外,亦有系統性產業應用與企業化推廣,促使該項產業成為挪威三大產業之一。   大西洋鮭魚品種改良是運用大規模的家系選拔,長期且有系統地進行遺傳育種改良,不僅可避免養殖過程中經濟性狀所產生的近親衰退現象,反而因多世代遺傳改良而提升養殖效益,經過5-6個世代的選拔改良,主要的重要經濟性狀已超過野生種大西洋鮭魚,養殖時程從改良前的4年減至2年以內,大幅降低一半的養殖成本,並將整套技術輸出至南美洲智利及其他國家使用,目前已應用於鯉魚、吳郭魚及白蝦等養殖品種的改良,著名例子包括:Genetically-Improved Carp (Krasnodar carp, Ropsha carp)、Genetically Improved Farmed Tilapia (GIFT)、GenoMar Supreme Tilapia™ (GST)、Shrimp Improvement Systems (SIS)等改良品種。不但為國家帶來大量的外匯收入,更創造許多的工作機會。   相較於過去著重在經驗傳承的臺灣水產養殖業,借鏡挪威的成功經驗,未來應該從科學研究的角度,建立適合我國養殖漁業的關鍵技術。實行的策略可由養殖技術、育種、疾病防治、藻類應用等方向著手。特別是結合傳統選拔育種方法與現代分子生物技術所開發之標記輔助選育 (marker-assisted selection, MAS)平台,將古典遺傳的選拔育種,透過科學與系統化的分子生物與選育管理雙重策略,來培育生長快速、抗病力佳、抗逆性強、飼料效率高,以及具體型、肉質、口感、風味、色彩、圖樣等各種優質品質的高經濟價值新穎性品種,實為提升水產養殖品質、產量以及效益之主要關鍵因素,是現階段學術研究與產業合作之重點發展方向,未來除達成較精準且有效率的科學選育外,亦會成為全球養殖產業追求永續革命性發展之必然趨勢。 三、無抗養殖   由於氣候變遷、過度捕撈和海洋汙染,漁業資源逐漸枯竭,轉而依賴水產養殖供應。聯合國糧食及農業組織 (FAO) 年報預估,2030年水產養殖魚類將占全世界食用魚的62%,成為全球糧食和經濟增長的支柱。氣候變遷不僅改變了養殖環境,更影響了水產生物的生理恆定,以致養殖生物對於病原體的抗病力下降,導致大規模疫病的爆發,成為水產養殖產業發展的重大瓶頸。   然而抗生素或化學藥劑的不當使用,不僅無法有效控制疾病,長期使用所引發的環境污染、細菌抗藥性和藥劑殘留等問題,更是水產養殖業發展的一大隱憂。因此結合免疫學、病毒學、分子生物學、水產養殖學、生物資訊等新知識、新技術,由基因調控及功能研究為起點,開發水產生物之無抗 (抗生素) 養殖新策略,也是未來的重要課題。近年來具產業潛力的研究方向包括:   1.免疫激活物 (immunostimulant):   泛指具提升動物先天性免疫反應的物質,包括:來自細菌的脂多醣 (lipopolysaccharide)、肽聚醣 (peptidoglycan)、凝結多醣 (curdlan);萃取自蕈、菌類的krestin、lentinan、schizophyllan、scleroglucan;酵母的葡聚醣 (β-glucan);海藻的昆布多醣 (laminarin)、藻酸鹽 (alginate)、鹿角菜膠 (carrageenan)、褐藻醣膠 (fucoidan)等。   2.益生菌種開發:   益生菌可用於改善、養殖環境、淨化水質與疾病控制,將數種不同菌種組成之複合益生菌可應用於水產養殖水質處理以及開發生物飼料,以此技術取代化學藥劑處理而符合養殖漁業永續經營的原則。   3.新型生技疫苗 (Novel vaccines from biotechnology):   疫苗是指可使生物體產生「特異性」免疫的生物製劑,透過預防接種使接受方獲得免疫力,因此是對抗各種傳染性疾病的有力武器。「預防勝於治療」,雖然水產疫苗的功效已獲得大眾認可,但在亞洲魚藥市場的發展,實際上困難重重;除了養殖業者的免疫預防觀念薄弱外,水產疫苗的生產成本與使用上的人力成本,也都影響著疫苗的推廣與產業應用。可喜的是,1970年以來遺傳工程、DNA重組等基因工程技術快速發展,透過現代分子生物技術突破傳統疫苗生產瓶頸,包括:取代生產成本高、產量低的活細胞病毒增殖系統;減毒病毒時有的突變問題等,所開發的新型生技疫苗 (DNA疫苗、次單位疫苗、多價混合疫苗及動物用疫苗佐劑等) 和口服傳遞系統,不僅價廉、效高又安全。相關的革命性研究將引領水產疫苗產業有突破性發展,進而達到水產養殖產業永續經營的目標。   4.其他創新對策:   人類多種病毒性疾病的藥物開發是利用阻斷病毒與寄主細胞受體的結合來達成防治目的,以魚類為例,mannose receptor (MR)、toll-like receptors (TLRs)、glucosaminyl 3-O-sulfotransferase-3 (3-OST-3) isoform和GHSC70等細胞膜上的分子已經被證實是某些特定細菌和病毒的受體分子。了解這些病原體的受體後,可以使用一些分子「卡住」病原體與受體的結合位置,當病原體失去細胞屏障後,就可能被生物的免疫作用消除。此外最近也有一些研究利用RNA干擾 (RNAi)、致弱衛星RNA等技術干擾病原體的基因運作來對抗疾病。   由於水產用藥的法規相當嚴謹,加上世人環保意識抬頭,近年來國際間已嚴格限制使用抗生素與化學藥劑,將來必須選擇安全和對的方法,才能真正發展無抗養殖的精緻農業。 四、智慧化管理   為實現水產養殖產業的永續經營,創新養殖科技應結合資訊與通信科技 (Information and Communication Technology,簡稱ICT) 以及物聯網科技,發展智能監控管理系統與精準化養殖生產技術,由現場系統化設施的建置、水質的管理維護、養殖動物疾病的預警及控制等目標著手,藉由提升水產養殖產業的生產力,為未來的產業升級奠定基礎。可發展的智能科技包括:綠能智慧型農漁業設施、智能循環水系統、感知器科技 (包括水流、水位、溫度調節、溶氧、pH、氨氮、亞硝酸鹽、自動投餌機、生物體長測量系統等)、物聯網與智慧雲端平台系統、遠距疾病診斷系統、生長表現分析系統與水產生物科技產品等,相關的網路監控系統不僅可以進行有效的健康管理,並可即時為養殖期間的各種問題提出解決方案。透過「生態、健康、循環、集約」的養殖型式,在提升產品質與量的同時,朝「環境友善」的方向努力,應用智慧化的新興科技提升臺灣水產養殖產業的生產力與國際競爭力,產業的永續發展便可水到渠成。 肆、瞻仰未來   臺灣在水產科技產業具有強大潛能與優勢,在新品種開發、種苗培育、繁殖與生產、養殖管理技術、飼料生產、漁產加工及行銷系統等策略,皆已發展完整之水產養殖產業技術,在國際市場上占重要一席之地。同時也從原本的養殖和捕撈者,轉變成為種苗生產、養殖管理、品種改良技術的供應者,並積極朝向基因轉殖水產生物產品功能與商業價值發展。臺灣水產養殖興盛,於養殖科技方面,一直維持高度的競爭優勢,但全球變遷對周邊海洋環境造成不同程度的影響,衝擊我國漁業,也威脅著水產養殖產業的後續發展。在邁入二十一世紀的未來,糧食供需、資源保育以及面對國際嚴峻的競爭與挑戰,都必須事先擬訂對策與應變措施,以保護國內相關產業、生態環境及人畜食品的安全。臺灣以海洋立國,未來的發展與海洋密切相關,為兼顧生產、生活及生態均衡的三生農業之發展,政府必須長期支持海洋科技的發展。強化海洋科技研究不僅能提升臺灣海洋相關研究的國際知名度、增加水產養殖產能、改良漁獲品質,提高產品的附加價值,增加經濟產值,最重要的是,透過維護海洋資源永續發展,才能真正邁向「海洋興國」的目標。
2018/11/07
傳染性胃腸炎(Transmissible gastroenteritis)是高度傳染性的豬腸道病毒性疾病,由傳染性胃腸炎病毒(Transmissible gastroenteritis virus, TGEV)感染,主要病徵為嘔吐及下痢,造成嚴重脫水與腸細胞壞死,且2週齡以下的仔豬死亡率接近100%。由於TGEV屬於豬隻冠狀病毒的一種,新的冠狀病毒疾病的爆發是美國養豬業最關心的問題之一,需要透過科學技術找出解決良方。   過去的文獻指出,豬隻身上的ANPEP酶(amino peptidase N)會作為病毒感染時的受體,因此英國種畜公司Genus plc與美國密蘇里大學(University of Missouri)合作,通過CRISPR/Cas9基因編輯改造了負責製造ANPEP酶的基因,成功培育出對TGEV具有遺傳抗性的豬。【延伸閱讀】新興基因編輯技術使豬隻免於藍耳病之苦   此研究還嘗試確認編輯ANPEP是否會對豬流行性腹瀉病毒(Porcine epidemic diarrhea virus, PEDV)產生抗性,PEDV在2013年爆發時造成近700萬頭豬死亡。雖然缺乏ANPEP酶的豬仍會感染PEDV,但未來的研究或許可找出抵抗此種病毒的方式。   2015年時該團隊就以基因編輯培育出對豬呼吸與繁殖症候群(Pig Reprodutive and Respiratory Syndrome, PRRS)病毒產生抗性的豬隻,目標將這種生產抗病毒豬的方法商業化,改善動物健康和福祉,並減少畜牧業生產損失。目前Genus plc目前正在尋求FDA(美國食品藥品監督管理局)批准使用基因編輯技術根除PRRS病毒的威脅。
2018/11/01
植物可通過土壤中的養分和水分維持生命,故預測土壤中水分動態變化對農業或水資源管理具有重要意義。然而,利用電腦模型預測土壤濕度是一項具有挑戰性的任務,需要考量土壤質地、植被、氣候(包含日照、風、溫度、降水等)、地形等資訊,且模型開發、應用和分析方法也至關重要。大多數常見的水文模型都是根據回溯性資料(retrospective dataset)進行校正,且不考量氣候變化,進而假設降雨與徑流的固定關係;這樣的模型應用時會加深估計土壤濕度變化的不確定性,並產生較大的誤差。   美國國家航空暨太空總署於數前年發射GPM(Global Precipitation Measurement)和SMAP(Soil Moisture Active Passive, SMAP)衛星,可幫助進行全球性的降水觀察,通過良好的模型預測,能夠幫助增進農業效率。而韓國慶北大學(Kyungpook National University)與美國德克薩斯州A&M大學(Texas A&M University)合作,通過結合隨機隱馬爾可夫模型(Hidden Markov Model, HMM)與遺傳演算法(genetic algorithm, GA),提出了一種新型演算法,可幫助校正不同時空下的衛星數據與驗證其他水文科學研究。【延伸閱讀】農業先進大國荷蘭將邁向新的挑戰—應用宇宙衛星預測作物生產   GA屬於一種進化演算法,而HMM則幫助調整模型所需的輸入參數,使預測結果更加符合實際情形。此演算法在美國愛荷華州和伊利諾州進行測試,與過去文獻提出的SWAP(Soil-Water-Atmosphere-Plant)-GA方法相比,更提高預測的準確性。   此研究為隨機模型的首次應用,並開拓了使用衛星數據預測土壤水分動態變化的方法。雖在預測每日水分變化仍具有技術上的侷限性,但可進行較大空間與時間尺度的土壤溼度預測,並根據氣候變化進行調整,且只需使用現有氣象站的降水數據;不但簡化了參數輸入與模型結構,更縮小了預測的錯誤性。可協助氣候變遷影響下,未來的農業及水資源管理效率提升。
2018/10/31
世界上大約四分之一的海產來自於底拖網捕撈(bottom trawling)而得,產量約為1900萬噸,底拖網是捕魚船上的大型捕撈工具,捕撈時沿著海床將不同種類、體型的漁獲一網打盡,雖然可以一次取得大量收穫,但也會一併帶走經濟價值低的小型生物,這些小型生物通常面臨丟棄或是死亡的命運,久而久之將不利於海洋生態。此外,底拖網的使用特性容易對底棲性生物及海底生態造成傷害,過去科學家們一致認為過度使用底拖網會影響海洋永續發展,但卻無法準確衡量影響範圍及危害程度。   絕大多數拖網捕撈發生在沿岸大陸棚和大陸斜坡的深度範圍中,但過往資料供的空間尺度較大,無法精細判斷拖網空間與足跡分布狀況。現今有一項跨國研究,使用高解析度衛星漁船監控系統(vessel monitoring system, VMS)與航海日誌計算底拖網足跡,針對非洲、歐洲、美洲及澳洲沿岸的24個區域進行數據分析,發現在780萬平方公里研究範圍的海洋區域中,底拖網捕撈範圍涵蓋了14%,但各地區的底拖網足跡存在極大差異。例如,智利南部僅有0.4%的海底遭受底拖網捕撈,而亞得里亞海則有80%以上。此外,在澳洲和紐西蘭海域以及北太平洋阿留申群島、東白令海和阿拉斯加灣海域,拖網佔地面積不到10%,但在部分歐洲海域超過50%。採用拖網的商業捕撈區域若達成公認的永續性捕撈標準,其拖網足跡通常較小。當底拖網捕撈面積低於10%時,底棲魚類捕撈率可達到永續性基準,但當面積超過20%時,維持永續性就有難度。   此研究中採用了捕撈船隊使用漁具的相關資訊,所提出的足跡估計值也比過往文獻描述更為準確。雖然部分地區(如東南亞)因缺乏詳細的捕撈數據而未被納入研究中,但此論文涵蓋了目前為止全球拖網捕撈狀況最詳盡的資訊,並提供了一種估算拖網捕撈足跡的方法,其中包含漁具尺寸、船速和拖網總時數等,進行較為合理的估計。【延伸閱讀】將作物空照圖轉為植物生長健康即時指標的應用程式   相關參與人員來自美國華盛頓大學(University of Washington)、羅德島大學(University of Rhode Island)、美國海洋暨大氣總署(National Oceanic and Atmospheric Administration, NOAA)阿拉斯加漁業科學中心、澳洲聯邦科學與工業研究組織(Commonwealth Scientific and Industrial Research Organisation, CSIRO)、荷蘭瓦赫寧根海洋研究中心(Wageningen UR)、阿根廷巴塔哥尼亞中心(Centro Nacional Patagónico)、英國班戈大學(Bangor University)和海洋管理委員會(Marine Stewardship Council)、芬蘭自然資源研究所等,論文發表於< Proceedings of the National Academy of Sciences of the United States of America (PNAS)>。
2018/10/30
薰衣草(Lavenders,為Lavandula屬,Lamiaceae科)為高經濟價值園藝植物,也是長期以來被廣泛運用的藥草,具有放鬆心情與輔助睡眠的效果,而精油(essential oils, EOs)也廣泛用於美妝、醫藥等產業。   為了更加了解植物精油的產生機制,加拿大的布洛克大學(Brock University)和英屬哥倫比亞大學(University of British Columbia)的研究學者對薰衣草進行基因組定序,並採用de novo draft genome assembly技術進行序列組裝,建立出第一個較為完整的薰衣草基因組草圖(draft genome),並找出精油產生的相關代謝途徑,藉由了解並控制這些基因表達的調控因子,就能生產人類所需成分的精油。   這些資訊可以幫助之後的人員開發各薰衣草品種的鑑定基因標記,或是研究如何利用基因和生物技術協助育種改良,減少薰衣草中的樟腦或提高芳樟醇及乙酸芳樟酯等成分,有利於提升薰衣草精油的市場價值。【延伸閱讀】藉由基因標記與分子育種技術,可加速耐鹽釀酒葡萄品系之開發時程   相關研究得到加拿大自然科學和工程研究委員會(Natural Sciences and Engineering Research Council of Canada)、加拿大研究主席計劃(Canada Research Chair Program)和卑詩省農業基金會(Investment Agriculture Foundation of B.C.)的資助,結果發表於<Planta>。
2018/10/25
在非洲撒哈拉沙漠以南地區,絲狀黴漿菌(Mycoplasma mycoides subsp. Mycoides,Mmm)感染山羊、乳牛等許多畜牧動物,導致傳染性牛胸膜肺炎(contagious bovine pleuropneumonia或稱lung plague)等疾病產生。目前此疾病依然難以控制,每年造成超過6,000萬美元的損失,並影響2,400萬生產者的生計。雖然受感染的動物可使用抗生素治療,但這些動物多數為非法來源,在惡劣的環境中容易導致治療無效和抗生素耐藥性等問題。   迄今為止,市場上只有一種活性減毒疫苗可以控制lung plague,將疫苗注射到牛的尾部,數週後就會開始產生相應的抗體。雖然疫苗效果很好,但其對溫度較為敏感,在非洲這種高溫地區,容易使得疫苗弱化或是變性,並可能導致接種後的動物產生發炎和潰瘍等免疫反應。   為尋求更好的解決方式,加拿大薩克其萬大學(University of Saskatchewan)通過加拿大國際糧食安全研究基金(Canadian International Food Security Research Fund,CIFSRF)申請並獲得了國際發展研究中心(International Development Research Centre,IDRC)和加拿大全球事務部(Global Affairs Canada)的資助,與肯亞的研究人員合作以開發新的疫苗。   不同於使用傳統疫苗開發方式,研究團隊使用反向疫苗學(reverse vaccinology)開發新型疫苗,利用程式分析細菌基因並找出最可能導致牛產生免疫反應的抗原,再製備與純化所選蛋白質,與佐劑混合測試。在鑑定的66種Mmm蛋白中,有四種可保護牛隻免受侵害。【延伸閱讀】血液檢驗將有利於促進乳牛健康   這種新型疫苗使用肯亞各種Mmm菌株的蛋白質抗原,生產成本更低,且於室溫更加穩定,現今已獲得肯亞疫苗生產商的許可並進行生產,預計將進行田間試驗。反向疫苗學已被用於目前市場上的人類腦膜炎球菌疫苗,未來也可用於開發其他重要動物疾病的疫苗,抵抗結核病菌、黴漿菌、大腸桿菌的感染。
2018/10/24
穀類富含大量的碳水化合物,自古便做為人們的主食,雖可供溫飽,但人體仍需額外攝取其他維生素或礦物質等元素,如:鐵、鈣、維生素A及B群等,才能進行正常生理代謝。美國農業部農業研究局(USDA Agricultural Research Service)的研究人員Robert Graybosch博士表示:食物中營養素不足或內部所含反營養物質(antinutrients)會干擾人們對營養素的攝取,根據統計,全球約60%的人並未攝取足夠的鐵質。   透過額外添加維生素或礦物質於食物中提升營養價值的手段,稱作食品營養強化(fortification),可幫助補充人體所需養分。傳統的食品營養強化方式為食品添加劑,例如食鹽中適當添加碘可防止甲狀腺腫大。隨著生物技術不斷進步,若能在作物生長的過程中,利用遺傳育種或基因工程等方式,使植物自行生合成特定維生素或礦物質,強化食品本身營養素的方式,則稱作生物營養強化(biofortification)。   以稻米為例,稻米在部分貧困地區是窮人賴以維生的主食,但其中維生素A含量少,貧民在長期只食用稻米的情況下容易缺乏維生素A,使得免疫力下降與疾病產生。經基因工程技術,科學家成功培育富含維生素A的黃金米,提供更有效攝取維生素A的途徑,此為透過基因改良方式達到生物營養強化的案例之一。   Robert Graybosch及其研究團隊以小麥(Triticum aestivum, common wheat)作為研究材料,希望在不減少產量的前提下,探討影響穀物蛋白含量(grain protein content)的Gpc-B1基因與低榖植酸(low grain phytate)的 lpa1-1基因在小麥田間試驗中如何調控產物中的微量元素含量。結果表明,結合此兩種特性可以增加了人類從中獲得的鋅、鈣和錳等元素。【延伸閱讀】植物科學發現可能有助於治療過敏和免疫缺陷   雖然此研究結果有助於培養高蛋白含量、低穀植酸且單位面積產量不變的小麥品系,但植物基因表現容易受環境因素影響,因此在其他地區可依照這些研究結果調整小麥品系的育種背景方向,例如未來可改良北美大平原(Great Plains)的小麥,利用基因漸滲(introgression)的方式獲得生物營養強化的優良性狀,並在北美草原大量推廣種植。
2018/10/22
臺灣每年平均飼養3億多隻雞,其中會讓雞隻下痢、出血的球蟲病,因為病原體會存在糞便中難以清除,容易造成雞場雞隻重覆感染與腸道病原菌二次性感染,雞農常會使用抗生素、抗球蟲藥物進行防治,卻衍生出藥物殘留與抗藥性病原等問題,這幾年雞蛋屢被驗出不該使用的乃卡巴精便是一例。   中興大學獸醫學系特聘教授張力天發現可食性植生素咸豐草,可改善雞隻免疫系統,具有對抗球蟲病的功效,不僅如此,也可改善雞隻腸道菌相,改善蛋雞生產環境。目前市面上已有兩款飼料添加物上市,他努力讓這系列產品推向國際市場。  全球因球蟲病,產業年損20億   科技部去年推動「前瞻農業科技──新世代農業生物保護劑之開發」,希望解決產業問題,以推動安全健康農業。長年鑽研中草藥醫學研究及抗原蟲飼料添加物研發的中興大學獸醫學系特聘教授張力天,共提出「改善雞、豬腸道菌相的新穎性優質飼料」與「抗植物病原菌的綜效性微生物製劑」等三項研究計畫,希望開發可食性的植物性飼料添加物,取代抗生素濫用現象,改善禽畜產業的疾病問題。   十多年前,張力天因參與中研院農業生物科技研究中心研究員楊文欽團隊,透過動物實驗的研究,發現咸豐草具有改善糖尿病代謝疾病與抗食因性細菌的潛能,循著此線張力天和楊文欽進一步發現咸豐草應用在雞隻上,具有抗雞隻球蟲病的潛力,因此合力研發配方,在五年前奪得第十屆國家新創獎。   據農委會統計,臺灣去年飼養約3.3億隻雞,其中蛋雞約有1千7百萬隻,年產75億顆雞蛋。為了供應市場雞肉、蛋大量需求,雞隻長期被密集飼養,環境容易傳播病原菌,像雞隻球蟲病就是養雞產業非常普遍的一種疾病。   球蟲病一年四季都可能發生,其傳染途徑是當球蟲卵囊在適合的溫度、濕度和充足的氧氣下芽孢化後被雞隻食入,雞就會感染球蟲病。具感染力的卵囊在雞的腸道中釋放出芽胞子侵入破壞腸道上皮細胞,造成雞隻脫水、下痢、出血。小雞最快可在七天內死亡。而這些被感染的雞排出的糞便將帶有卵囊,卵囊再度芽孢化後還可繼續傳播,在環境中生生不息。   不僅如此,張力天指出球蟲病和瘧疾很像,在它還沒被殺滅前,會一直留在雞隻的腸道寄生,雞的腸道因為受傷,吃進去的飼料吸收效果都不好,間接影響飼料換肉率。每年全球家禽因球蟲病約損失20億美元。為了抵抗這疾病,雞農和蛋農通常會使用抗生素、抗球蟲藥物進行防治,但也衍生後續雞蛋殘留藥物、球蟲病產生抗藥性等問題。   放眼國際,張力天說,歐盟、東南亞、美國近年已陸續表態將禁用抗生素,而歐盟更直接明定2021年後不准在飼料裡投入化學性的驅蟲藥(緩衝期有三年),顯見研發非化學性的咸豐草製劑,將有助於未來全球家禽市場的發展。  透過侵入分解病原體,咸豐草讓雞更健康   臺灣常見的咸豐草主要有三種,分別是大花咸豐草、小花咸豐草和黃花咸豐草,而大花咸豐草是多年生草本植物。從外觀上判別,黃花咸豐草只有中間黃色管狀花,小花咸豐草和大花咸豐草黃花周圍則有白色的舌狀花瓣,但大花咸豐草的舌狀花瓣會比小花咸豐草還長。   經過多年研究,張力天發現,實驗動物吃下咸豐草飼料配方後,免疫系統的巨噬細胞會分泌酵素物質,把病原菌分解掉,讓細菌的散佈機制被瓦解,而不致發生發炎反應影響動物健康。   「簡單來說,它不是直接殺滅病原體,而是影響病原體侵入的方式來控制疾病。」張力天強調,由於球蟲菌株非常多種,他們針對不同球蟲菌株、甚至是有抗藥性的球蟲菌株做測試,發現咸豐草都有辦法抑制。   此外,張力天說,雞隻吃了咸豐草飼料配方還可改善腸道菌,使腸道菌壞菌減少;也可以改善飼育咸豐草飼料蛋雞的生產環境,減少因運輸保存過程產生的劣蛋、 汙染蛋比率。   張力天更做了咸豐草飼料配方產品的穩定性研究,「我們做了兩年的品管,從原料、加工、成品到倉儲都進行把關,平均每一個月進行抽樣檢查,發現在儲存和運輸上,這配方在4℃、室溫、40℃、高溫90℃和瞬間高溫130℃都沒問題,基本上每一個製程步驟都很完備。」   現階段和張力天合作,使用咸豐草飼料配方的蛋雞平均一年有20萬隻,白肉雞則約是10萬隻。看準2024年全球近130億美元的抗球蟲藥物及疫苗市場,張力天預計在今年底募資、成立公司,並首先鎖定東南亞市場,他希望這項抗球蟲的咸豐草飼料配方不僅能被臺灣產業界廣泛使用,更能走向國際,造福全球的家禽市場。 【相關資訊】 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院黃小姐,電話:03-5185151,信箱:1112047@mail.atri.org.tw
2018/10/19
漁業和水產養殖業是各地民眾重要的食物、營養和收入來源,自糧食革命與工業革命以來,世界上人口持續增加,對於水產品的需求量也連帶上升;然而捕撈漁業產量在20世紀80年代末開始相對停滯,故水產養殖業成為促進食用水產供應量大幅增長的主要驅動力。   亞洲是全球養殖漁業發展最興盛的地區,然而養殖業可能受到氣候變化影響,使得產量下降,加上極端天氣出現越加頻繁,水產養殖保險可保障漁民因天然災害產生的經濟損失。目前已有數種水產養殖保險可以降低經濟風險,但海水養殖可能因當地海水深度或物種耐溫能力等特殊因子,造就不同的產量差異,這也是實際評估所面臨的挑戰,保險實施則應納入評估魚獲價值以及累積環境數據的相關技術才能真正貼合生產者需求。【延伸閱讀】Holstein UK推出牛資料庫以增進可追溯性與遺傳價值   日本Umitron公司已開始在水產養殖領域使用物聯網與人工智慧技術,2017年開發的第一個產品UmiGarden可透過記錄魚群變化幫助漁民優化飼料配方。現在Umitron更擴大早期資金並啟動水產養殖保險數據服務,總額達到11,043,702美元,是aquatech早期創業公司籌集的最大金額。另外,自2018年8月起,開始使用物聯網和衛星遙感數據協助水產養殖保險服務,以評估和減輕與海洋環境和漁場營運的相關風險。

網站導覽
活動資訊
訂閱RSS
電子報訂閱