MENU iconMENU
主題專區
主題專區
2018/12/10
大西洋鮭(Salmo salar, Atlantic salmon)的營養價值高、肉質口感佳,因此深受廣大消費者喜愛,在魚市中具有高商業價值。市售的大西洋鮭多以人工繁殖方式大量養殖,其中著名的養殖國家有北歐挪威及南美智利等國,也是臺灣進口大西洋鮭的主要來源。大西洋鮭是卵生魚類,雌魚體積一般而言較雄魚大,可儲備產卵時所必須的能量。雌魚懷孕後會季節性洄游至河川上游產卵,孵化後的鮭魚長到適當的體長後,會隨河川順流至下游的海洋中,性成熟的鮭魚於交配後又會洄游至上游原生地產卵,完成其生活史。雖然現在多以人工繁殖的方式養殖大西洋鮭,但野生鮭魚多為生態系中的環境指標物種(indicator)及關鍵種(keystone species),在當地食物鏈中扮演重要的角色,長期監控鮭魚族群的動態,將有助於保育政策及漁業政策之擬訂。芬蘭赫爾辛基大學(University of Helsinki, Finland)、芬蘭自然資源研究院(Natural Resources Institute Finland)與芬蘭圖爾庫大學(University of Turku, Finland)的聯合研究團隊研究後發現,自1970年代調查以來近40年的時間裡,塔納河流域大西洋鮭的重量與體積正在逐年縮減中,這樣的現象也反映在該族群的基因中。   過去的追蹤發現,生活在塔納河流域的大西洋鮭,其性成熟年齡愈趨年輕化,早熟的鮭魚相較於晚熟的鮭魚而言,有著體長較短、體重較輕的特徵,且通常雄魚較雌魚早熟。進一步研究發現性成熟特徵與基因Vgll3的遺傳型式有關。研究人員於Vgll3的基因座(locus)上發現多個遺傳變異,研究團隊將這些遺傳變異分成兩種不同型式的等位基因(又稱對偶基因,allele),並證實其中一個等位基因型式可反映出早熟且體積小、另一個型式則反映出晚熟且體積大的兩種特徵。研究發現成魚尺寸與性成熟年齡隨著年代發生變化的現象,皆反映在其調控基因Vgll3上。研究顯示鮭魚形態特徵的改變並非僅是單純隨環境變化而發生表型可塑性(phenotypic plasticity),而是基因型改變造成遺傳變異,進而產生表型特徵的改變。遺傳特徵隨世代產生變異,這意味著演化正在發生,原有的特徵因生存環境發生變化,逐漸演化成為新的特徵,以適應新的環境變化。研究也發現,大西洋鮭魚族群在短時間內快速地產生遺傳變異,多呈現在雄魚的外表形態及遺傳上,這顯示天擇(natural selection)可能僅作用在特定性別的個體上,產生性別衝突(sexual conflict)的現象。【延伸閱讀】以eDNA追蹤瀕危魚種   這項由芬蘭聯合研究團隊發現的重要成果已於今年10月已發表在<Nature Ecology & Evolution>,相關研究或許能在演化學、族群監控、漁業永續等領域加以應用。研究團隊也希望能在未來找出改變族群遺傳結構的關鍵環境因子,並盡可能防止其影響擴大。
2018/12/07
美國堪薩斯州立大學通訊與農業教育學系的研究團隊選定活體園藝作物的網路消費模式做為主題進行研究,研究團隊選定美國亞馬遜(Amazon)、eBay等著名電子商務公司進行探討。研究發現園藝產品在網路市場的接受度並非如一般商品一樣好,為此研究團隊將消費模式分成買方、賣方及販售平台等幾個主要層面進行探討。
2018/12/06
美國愛荷華州立大學利用高品質3D數位化模型描繪植物構造,建置3種禾本科的花卉模組。此項技術包含光學顯微鏡拍攝植物薄層切片及利用電腦輔助設計軟體,將2D影像轉換置3D模型重現並可在3D模組動畫中觀看。
2018/12/05
自然保護區的劃設,除減少人為直接影響外,赫爾辛基大學芬蘭自然史博物館的研究團隊經過長期觀察下,發現當全球面臨氣候變遷的衝擊時,自然保護區的劃設對於保護區境內鳥類物種多樣性帶來正面的影響,達到物種保育之目的。
2018/12/04
由於世界人口增加、耕地面積減少、氣候變遷加劇與自然資源有限等原因,向外太空發展農業似乎是一種可行的想法;然而,植物已在地球上經過長期演化,早已適應地球的特殊環境。太空中的重力特性和土壤營養皆與地球上有所不同,欲發展農業則需透過科技技術尋求解決之道。   菌根是一種真菌與植物互利共生的構造,真菌的菌絲比植物的根更細,可幫助植物吸收水分與礦物質,而植物則可供給真菌所需的醣類和脂質,在營養缺乏的環境中,這樣的構造更能幫助植株生長與促進健康。獨腳金內酯(strigolactone, SL)是一種常見的植物激素,在調節植物根與芽之萌發與刺激菌根中菌絲生長具有重要角色。瑞士蘇黎世大學(Universität Zürich)則利用此一特性,測試真菌Rhizophagus irregularis在模擬微重力環境下,於茄科模式植物—矮牽牛(Petunia hybrid)產生的菌根化現象。   由於真菌體內具有重力感受器,因此微重力條件對菌絲發育具有負面影響。而SL生合成和運輸會受到營養缺乏的條件誘導,而植物中的PDR1基因能夠改變的SL運輸效率。透過模擬得知,在微重力環境下,PDR1基因過度表現的矮牽牛仍然可生成較多的菌根。顯示藉由調控基因表現而誘導植物激素產生,並進一步引導菌根生成,或許有利於茄科植物在太空站或其他星球上生長;未來進行植物太空研究時,或可選擇生成較多SL的植物培養與耕作。【延伸閱讀】農桿菌之應用協助人們了解植物繁衍背後之遺傳機制    相關研究發表於< Nature Microgravity >
2018/11/30
草原生態系主要分布於溫帶地區,約占陸域面積的40%,部分地區為放牧業主要的經營場域。由於放養牲畜主要以草本植物為主要進食來源,草原品質與數量將對產乳量及牲畜肉質產生重大影響,為此即時掌控草本植物的生長狀況並改善牧場經營管理方式,以提供經濟效益高且營養價值高的牧草,將是發展永續健全放牧業的重要關鍵之一。英國諾丁漢大學生物科學院(School of Biosciences, University of Nottingham, UK)的研究發現,草原植物的生長高度或許是影響放牧產業的關鍵。   研究團隊先將草原類型分成6類,每類皆紀錄(1)草原類型、(2)土壤型態、(3)優勢植群組成、(4)施肥狀況及(5)牲畜種類共5種因子。有別於傳統現場採集樣本,送至實驗室以昂貴儀器檢測且曠時廢日的做法,研究團隊改以相對快速且經濟的近紅外光譜儀(near-infrared spectroscopy, NIRS)進行現場採集並即時分析,檢測植物體中影響牲畜健康相當重要的指標,例如粗蛋白(crude protein)、酸洗纖維(acid detergent fiber, ADF)、中洗纖維(neutral detergent fiber, NDF)、水溶性碳水化合物(water soluble carbohydrate, WSC)、灰分(ash)、可消化有機質(digestible organic matter, DOMD),這些均為反芻動物營養學中影響消化與吸收的重要影響因子。近紅外光譜儀能分析植物體吸收與反射特定波段量多寡的差異,藉此推論植物體內營養組成比例。研究發現植株高及植被覆蓋率是整個草原是否適合放牧的主要因素。研究顯示若株高低於7公分,植物體大多僅剩營養組成比例較低的組織,這將使動物的營養吸收受限。【延伸閱讀】美國康乃爾大學推出最新的葡萄品種—Everest Seedless   該研究於今年11月發表在<Frontiers in Sustainable Food Systems>期刊。這項研究成果與實驗方法可供牧場經營管理參考之用,除確保畜產供應不虞匱乏外,更達到牧場永續經營之目的。
2018/11/28
美國農業部(United States Department of Agriculture, USDA)於11月13日在華府發表e-連結(e-Connectivity)先導型計畫,預計未來在美國農村投入大量基礎通訊建設,建立農村與都市之間的數位網絡。由於寬頻網路是現代人獲取資訊重要的推手,2018年美國聯邦通訊委員會(Federal Communications Commission, FCC)針對農村地區使用網路情況的調查發現,現今仍舊有80%的大眾無法擁有可靠、可負擔及方便快速的網路。為此,美國農業部積極在全國各地農村投入寬頻基礎建設,盼能替傳統農村注入新科技的意象,藉此增加區域經濟及提高經濟發展的可能性。   美國參議院在2017年通過農業及農村發展的相關法案,成立農業及繁榮農村跨部會專案辦公室(Interagency Task Force on Agriculture and Rural Prosperity),盼能透過整合聯邦與各州政府之意見及資源,擬定包含建設e-連結(e-Connectivity)、改善生活品質(Improving Quality of Life)、提升農村勞動力(Supporting a Rural Workforce)、注入科技新意象(Harnessing Technological Innovation)及建設經濟發展(Economic Development)等措施,藉由透過新政策的規劃,提高農村的經濟發展與增加與都市的連結。   目前美國農業部透過電信計畫(Telecommunications Programs)提供19個專案計畫,共在美國12個州的農村地區投入9,100萬美金,提供許多經濟發展及建設的機會。這些基礎建設包含光纖寬頻系統的架設、升級現有DSL技術、升級無線通訊系統等。美國農業部希望藉農村寬頻基礎建設的設置,帶動現在及未來的區域經濟、促進商業發展、串聯農村地區的公共設施。   e-連結先導型計畫僅是美國川普當局繁榮農村的第一步,在建構互通有無的資訊網絡後,便可實現: 改善生活品質計畫、 提升農村勞動力計畫、 注入科技新意象計畫及 經濟發展建設計畫,為未來美國農村的經濟發展,注入一劑強心針。【延伸閱讀】現有家禽相關創新技術盤點   無獨有偶的是,我國近年來亦致力發展智慧科技農業,盼導入人工智慧/資通訊技術、農業生物科技及物流保鮮應用等元素,提升農產業各方發展。美國e-連結及延續計畫,或許可做為我國農業政策擬定及發展策略上重要參考依據。
2018/11/20
Teapasar是新加坡的是一個初創的線上茶葉市集,於2018年9月推出,其中運用創新思維模式的兩種服務工具-ProfilePrint和TasteMap,可透過科學方式敘述茶葉特性及客戶偏好,並提供最接近客戶需求的茶葉品項。   ProfilePrint利用氣體色譜法與質譜儀(Gas chromatography–mass spectrometry, GC/MS)創造了茶的代謝物指紋圖譜,可針對茶樣本的來源、風土、栽培品種、收穫日期和其他標識進行了分類,透過質譜儀與多變量統計分析方法,能在沒有標籤的情況下也能查出茶葉樣本的來源及合法性。目前也有利用以擴增片段長度多型性(Amplified Fragment Length Polymorphism, AFLP)或檢測p -coumaroysolglucosol-rhamnosylgalactoside以分析茶葉樣本的方法,但ProfilePrint可提供生物標記和基因譜分析以外,更加便宜的分析方式,簡化的氣相色譜儀售價僅為兩千美元。   TasteMap則通過線上用戶選取的八種口味偏好類別以區別消費者,包括甜味、豐富度和澀味等,再依喜好推估茶品項和顧客之間的最佳配對,並以人工智慧與機器學習技術,通過反複試驗改進預測性能。由於TasteMap仰賴於大量數據量培訓,因此茶認證的實驗室利用超過一百萬個數據訓練樣本,以增進模型的預測能力。目前Teapasar已開始使用來自350種茶樣品的400個數據進行模型測試,隨著供應商和客戶的數量逐漸增加,機器學習的效果會更加優異。【延伸閱讀】草本茶正在全球流行中   Teapasar的創建提供了一個可擴展的業務平台,其建立基礎為新加坡國立大學(National University of Singapore, NUS)所提供的化學代謝物圖譜指紋辨識方面的專業知識,與新加坡科技研究局(Agency for Science, Technology and Research, A*STAR) 提供的機器學習算法和數據培訓,雖然目前規模較小,但代表著茶葉科學、生物技術、供應鏈整合和透明度等跨域技術的結合,可能性無限。
2018/11/19
荷蘭應用科學研究組織中心(The Netherlands Organization For Applied Scientific Research, TNO),開發能偵測土壤硝酸鹽含量並應用於監測氮礦化作用的感測器。氮對於植物生長發育與其體內蛋白質生產具有重要意義,ㄧ旦知道需要供給多少氮肥給土壤,農民就可以計算出最適合植物生長所需的肥料添加量。   目前TNO與瓦賀寧恩大學(Wageningen Universiteit)正執行ㄧ項名為DISAC(Data Intensive Smart Agrifood Chains)的計畫,此計畫與開發土壤硝酸鹽感測器相關,並與當地農業公司、科技公司及研究中心共同合作致力為精準農業研發新技術。   TNO所開發的感測器能頻繁偵測土壤中的硝酸鹽含量,提供最即時的數據。為了節省能源與數據儲存容量,研究人員每日進行量測並提供相關平均數值,藉由ㄧ系列的數據收集,能持續觀察土壤中氮礦化(nitrogen mineralization)的過程。迄今為止,所有結果皆為現場測試,未來將可於不同地點進行測量,並透過應用程式檢查數據結果。【延伸閱讀】英國土壤濕度感測器突破性進展,為智慧型灌溉鋪路   由於植物只能吸收銨態氮或硝酸態氮,因此植物生長與氮礦化程度具有相關性,藉由智慧化偵測系統提供土壤中氮含量指標,除了可協助農民了解土壤中的氮含量是否滿足植株所需,也可幫助觀察施肥後植物的利用狀況。   目前研究正於荷蘭的測試農場Dairy Campus- Vredepeel en KTC Zegveld進行測試。感測器安裝於距基座約15公分內的植株根系附近,而太陽能電源供應及相關設備則是安放於地面上。目標是利用模型與遠端偵測技術,了解預測和實際產量的差異性,以研究植物產量與其蛋白質含量,以及感測器如何實際應用於場域的方法。雖然目前仍尚未確定如何藉由此感測器優化現有的施肥機制,但這項研究有助於更瞭解植物的生長環境與氮礦化關係。
2018/11/16
eDNA又稱為環境DNA (environmental DNA),是生物遺留在環境中的遺傳跡證之一。多數研究利用追蹤生物遺留在環境中的DNA,推估特定環境中生物多樣性(biodiversity)及豐富度(abundance),透過eDNA的採樣將能達到族群現況評估及未來保育的目的。   美國馬里蘭大學環境科學中心(University of Maryland Center for Environmental Science)與史密森環境研究中心(Smithsonian Environmental Research Center)共同研究以eDNA追蹤美國馬里蘭州乞沙比克灣(Chesapeake Bay)中鯡魚的數量。鯡魚是北美地區傳統捕撈魚種,也是當地生態系食物網中許多掠食者主要的食物來源,該物種的族群大小對當地生態系平衡扮演重要的角色,但由於1970年代以來過度捕撈及產卵地被破壞下,現已成為受威脅物種,如何保育該物種成了當地機構研究的重點之一。   研究團隊藉由檢測水域中目標鯡魚遺留在環境的粒線體遺傳片段,並以即時聚合酶鏈式反應(qPCR)將特定片段擴增,以擴增的數值結果量化族群大小及鑑識魚種,藉此能有效評估不同鯡魚族群的豐富度及棲地利用程度,達到監控的目的。與傳統架設漁網捕撈相較下,採集eDNA以分子生物學的方式將大量節省人力及物力資源,即可獲得目標物種的遺傳資訊,推估物種可能的有效族群量及產卵地。研究團隊調查橫跨12處支流,在馬里蘭州境內196個地點採集水樣,發現境內的灰西鯡分布在東岸流域,而西岸已開發流域多為藍背西鯡。【延伸閱讀】藉探索海洋DNA一窺海底環境的奧秘   該研究是自1960年以來,首次在乞沙比克灣流域大規模採樣eDNA進行鯡魚物種及族群方面的生態研究。該研究成果已發表在PLOS ONE期刊,研究結果將有助於當地鯡魚捕撈計畫的擬定及規劃相關保育策略。
2018/11/13
動物受到吸血昆蟲叮咬後容易引發局部或全身的過敏與發炎反應,使用驅蟲劑可預防蚊蟲叮咬引發的不適感與疾病傳播。自1944年開發以來,敵避(diethyltoluamide, DEET)就被認為是在商業上最持久且有效的驅蟲劑,受到人們廣泛使用。然而,考量到此類人工合成藥劑可能威脅孕婦和嬰兒健康,故各界極力開發以天然植物來源為主的驅蟲劑,例如香茅、薰衣草、貓薄荷等,部分天然精油的驅蟲效果雖然良好,卻有持久性不佳之問題,若可找出天然、有效且持久的驅蟲劑,則更能減少衍生的健康風險。   椰子油是一種從成熟椰子中搾取的食用油,屬於富含飽和脂肪酸的天然植物性油脂,以豐富的月桂酸(lauric acid)和肉荳蔻酸(myristic acid)含量而聞名。美國農業部農業研究局(Agricultural Research Service, ARS)近期發表研究於Scientific Reports,證實特殊的椰子油的中鏈脂肪酸,對於多種昆蟲,例如蚊子、蜱蟲、虻和臭蟲等具有良好的驅蟲活性。在實驗室的生物測定中發現,這些脂肪酸能有效抵擋虻和臭蟲兩週,抵擋蜱蟲一週,與DEET相比之下效果更好。【延伸閱讀】椰子油可提升過氧化小體異常之果蠅壽命   作者Zhu提及,椰子油本身並非驅蟲劑,但衍生的油離脂肪酸混和物—月桂酸、癸酸(capric acid)及辛酸(caprylic acid)與其相應的甲基酯(methyl esters)對於吸血蚊蟲具有強烈的驅除性。將脂肪酸添加在含有澱粉的配方當中,能保護牛隻長達4天。除此之外還能驅除傳播茲卡病毒的埃及斑蚊,且效果比起其他的天然精油成效更佳,這些結果顯示,椰子油脂肪酸在防範蚊蟲叮咬人或動物的潛在應用性,未來或許畜牧業可利用此特性製作成低成本配方保護動物,作為人工合成藥劑的替代品。
2018/11/09
我國水產養殖轉型發展新契機 國立臺灣海洋大學水產養殖系  周信佑教授 壹、國際漁業情勢與未來隱憂   全球變遷是暖化、氣候變遷、海洋酸化、人為活動等作用的合成效應,其對人類生活甚至生存的影響,是近年全球科學研究最重要課題之一;而海洋擁有豐富且廣大的生物資源,長期以來做為人類的「第二糧倉」,除了提供一般人日常食用,全球更有約十億人口仰賴海洋生物,作為主要或唯一的蛋白質來源。然而海洋資源也受到氣候變遷、過度捕撈和海域污染等因素,漁獲量逐年減少並可能已經降至極限值。再加上石化能源的日漸短缺,農地因過度開發而流失等等問題,聯合國跨政府氣候變化專家小組提出警告,在2080年之前可能將會有數百萬計的人面臨糧食短缺的困境。   水產養殖漁業已被公認為海洋資源枯竭後可取代捕撈漁業的重要趨勢產業,是本世紀發展最快的食品生產行業之一。根據聯合國糧食及農業組織 (Food and Agriculture Organization of the United Nations,FAO) 年報, 2012年水產養殖產量已達6,660萬頓,為人類提供近一半的食用魚品。由於野生魚類捕撈產量持平,同時全球新興中產階級需求大幅上升,預計到2030年,水產養殖產量將占全世界食用魚供應量達62%。中國海洋大學麥康森院士在國際高峰論壇上呼籲「一畝海水十畝田」,請各國重視海洋以及水產養殖的潛力,因為未來水產生物科技的開發與應用,將成為21世紀解決人類動物性蛋白需求的重要方法,永續的水產養殖產業將為全球糧食安全和經濟增長做出持久貢獻。 貳、國內特色   臺灣為海島型國家,位處熱帶與溫帶交接之亞熱帶地區,加上特有的地形、水深、海流與水溫等多樣化的生態環境,使得週邊海域具有豐富多樣的魚類資源。在產官學的努力下,成就了臺灣水產養殖產業長年的榮景,從早期的草蝦王國到現今的石斑王國,臺灣的養殖技術始終具有國際領先的地位,不僅在農業發展上扮演重要之角色,更對經濟發展有卓著貢獻。面對全球變遷的嚴苛挑戰,必須先建立糧食供應風險分擔及減輕的機制,實行的策略可由水資源安全、分子育種、養殖技術、疾病防治與發展農業新科技等方向著手。同時善用海洋生物技術,轉化逆境為動力,優化單位產量、改善臺灣土地資源利用效率,努力邁向永續新農業經營的目標。 參、科技發展方向建議 一、水資源安全   水是生物體的重要組成也是地球生物賴以生存的重要成分之一,其對於人類生存與經濟活動扮演舉足輕重的角色。淡水除了維持人類身體機能所需外,也是提升生活品質以及促進農業經濟發展的要素,因此水資源為所有國家之必需品,其對經濟發展的影響與重要性和石油不相上下。雖然水資源佔據地球表面71%,但無法直接被人類使用的海水占了97.5%,只有約2.5%是以淡水形式存在。而這2.5%的淡水,分別又有1.72%存在於冰川、冰帽及高山的雪中,約0.76%存在於地下水中,確實被人類所利用的水資源含量不高。然而隨著全球人口的增加,未來水資源匱乏的問題只會更加嚴重。以2015年聯合國世界水資源開發報告表示,預估至2030年全球用水需求量將超過總供應量40%,這表示將會有29億人 (約48個國家) 會處於 「水資源缺乏」 (Water-Scarce,年人均用水1000至1700 m3) 或「水資源緊張」 (Water-Stressed,年人均用水少於1000 m3) 的國家。   以臺灣而言,即便降雨非常豐沛,但降雨時間及空間上的分配極度不均,降雨時間多集中於5−10月,豐水期和枯水期能保存之水量差異極為懸殊;再則是降雨地點多集中於山區,河流因地形特性大多短淺,無法大量蓄積水源。而過去所興建之水庫,也因為淤積嚴重而導致蓄水量大減;再加上全球氣候變遷,在近十年內臺灣曾多次面臨到嚴重的缺水問題。實際上,臺灣已經名列為全球第 18 的缺水地區。   因此,不論是解決臺灣切身的問題,或是迎合世界產業趨勢,水資源相關議題,包括海水淡化技術中除鹽、多功能裝置等都是未來重要的研究方向。Chavez-Crooker等針對智利北邊、靠近全球最乾旱的阿塔卡馬沙漠的海水淡化廠技術做了完整的概述並探討對環境的影響。經濟部水利署及臺灣自來水公司已經規劃在台南興建臺灣本島的首座海淡廠,如何降低對當地環境與資源的影響,將是再創未來水資源經濟發展契機的重要考量。 二、分子技術輔助育種   位於北歐的挪威,為維持鮭魚養殖產業發展的基礎與榮景,該國政府從產業根本問題切入,積極投入海水養殖鮭魚的育種研究,尤其是大西洋鮭魚品種改良已將近有40年歷史,是家喻戶曉的成功例子,除大力支持多項基礎研究與產學合作外,亦有系統性產業應用與企業化推廣,促使該項產業成為挪威三大產業之一。   大西洋鮭魚品種改良是運用大規模的家系選拔,長期且有系統地進行遺傳育種改良,不僅可避免養殖過程中經濟性狀所產生的近親衰退現象,反而因多世代遺傳改良而提升養殖效益,經過5-6個世代的選拔改良,主要的重要經濟性狀已超過野生種大西洋鮭魚,養殖時程從改良前的4年減至2年以內,大幅降低一半的養殖成本,並將整套技術輸出至南美洲智利及其他國家使用,目前已應用於鯉魚、吳郭魚及白蝦等養殖品種的改良,著名例子包括:Genetically-Improved Carp (Krasnodar carp, Ropsha carp)、Genetically Improved Farmed Tilapia (GIFT)、GenoMar Supreme Tilapia™ (GST)、Shrimp Improvement Systems (SIS)等改良品種。不但為國家帶來大量的外匯收入,更創造許多的工作機會。   相較於過去著重在經驗傳承的臺灣水產養殖業,借鏡挪威的成功經驗,未來應該從科學研究的角度,建立適合我國養殖漁業的關鍵技術。實行的策略可由養殖技術、育種、疾病防治、藻類應用等方向著手。特別是結合傳統選拔育種方法與現代分子生物技術所開發之標記輔助選育 (marker-assisted selection, MAS)平台,將古典遺傳的選拔育種,透過科學與系統化的分子生物與選育管理雙重策略,來培育生長快速、抗病力佳、抗逆性強、飼料效率高,以及具體型、肉質、口感、風味、色彩、圖樣等各種優質品質的高經濟價值新穎性品種,實為提升水產養殖品質、產量以及效益之主要關鍵因素,是現階段學術研究與產業合作之重點發展方向,未來除達成較精準且有效率的科學選育外,亦會成為全球養殖產業追求永續革命性發展之必然趨勢。 三、無抗養殖   由於氣候變遷、過度捕撈和海洋汙染,漁業資源逐漸枯竭,轉而依賴水產養殖供應。聯合國糧食及農業組織 (FAO) 年報預估,2030年水產養殖魚類將占全世界食用魚的62%,成為全球糧食和經濟增長的支柱。氣候變遷不僅改變了養殖環境,更影響了水產生物的生理恆定,以致養殖生物對於病原體的抗病力下降,導致大規模疫病的爆發,成為水產養殖產業發展的重大瓶頸。   然而抗生素或化學藥劑的不當使用,不僅無法有效控制疾病,長期使用所引發的環境污染、細菌抗藥性和藥劑殘留等問題,更是水產養殖業發展的一大隱憂。因此結合免疫學、病毒學、分子生物學、水產養殖學、生物資訊等新知識、新技術,由基因調控及功能研究為起點,開發水產生物之無抗 (抗生素) 養殖新策略,也是未來的重要課題。近年來具產業潛力的研究方向包括:   1.免疫激活物 (immunostimulant):   泛指具提升動物先天性免疫反應的物質,包括:來自細菌的脂多醣 (lipopolysaccharide)、肽聚醣 (peptidoglycan)、凝結多醣 (curdlan);萃取自蕈、菌類的krestin、lentinan、schizophyllan、scleroglucan;酵母的葡聚醣 (β-glucan);海藻的昆布多醣 (laminarin)、藻酸鹽 (alginate)、鹿角菜膠 (carrageenan)、褐藻醣膠 (fucoidan)等。   2.益生菌種開發:   益生菌可用於改善、養殖環境、淨化水質與疾病控制,將數種不同菌種組成之複合益生菌可應用於水產養殖水質處理以及開發生物飼料,以此技術取代化學藥劑處理而符合養殖漁業永續經營的原則。   3.新型生技疫苗 (Novel vaccines from biotechnology):   疫苗是指可使生物體產生「特異性」免疫的生物製劑,透過預防接種使接受方獲得免疫力,因此是對抗各種傳染性疾病的有力武器。「預防勝於治療」,雖然水產疫苗的功效已獲得大眾認可,但在亞洲魚藥市場的發展,實際上困難重重;除了養殖業者的免疫預防觀念薄弱外,水產疫苗的生產成本與使用上的人力成本,也都影響著疫苗的推廣與產業應用。可喜的是,1970年以來遺傳工程、DNA重組等基因工程技術快速發展,透過現代分子生物技術突破傳統疫苗生產瓶頸,包括:取代生產成本高、產量低的活細胞病毒增殖系統;減毒病毒時有的突變問題等,所開發的新型生技疫苗 (DNA疫苗、次單位疫苗、多價混合疫苗及動物用疫苗佐劑等) 和口服傳遞系統,不僅價廉、效高又安全。相關的革命性研究將引領水產疫苗產業有突破性發展,進而達到水產養殖產業永續經營的目標。   4.其他創新對策:   人類多種病毒性疾病的藥物開發是利用阻斷病毒與寄主細胞受體的結合來達成防治目的,以魚類為例,mannose receptor (MR)、toll-like receptors (TLRs)、glucosaminyl 3-O-sulfotransferase-3 (3-OST-3) isoform和GHSC70等細胞膜上的分子已經被證實是某些特定細菌和病毒的受體分子。了解這些病原體的受體後,可以使用一些分子「卡住」病原體與受體的結合位置,當病原體失去細胞屏障後,就可能被生物的免疫作用消除。此外最近也有一些研究利用RNA干擾 (RNAi)、致弱衛星RNA等技術干擾病原體的基因運作來對抗疾病。   由於水產用藥的法規相當嚴謹,加上世人環保意識抬頭,近年來國際間已嚴格限制使用抗生素與化學藥劑,將來必須選擇安全和對的方法,才能真正發展無抗養殖的精緻農業。 四、智慧化管理   為實現水產養殖產業的永續經營,創新養殖科技應結合資訊與通信科技 (Information and Communication Technology,簡稱ICT) 以及物聯網科技,發展智能監控管理系統與精準化養殖生產技術,由現場系統化設施的建置、水質的管理維護、養殖動物疾病的預警及控制等目標著手,藉由提升水產養殖產業的生產力,為未來的產業升級奠定基礎。可發展的智能科技包括:綠能智慧型農漁業設施、智能循環水系統、感知器科技 (包括水流、水位、溫度調節、溶氧、pH、氨氮、亞硝酸鹽、自動投餌機、生物體長測量系統等)、物聯網與智慧雲端平台系統、遠距疾病診斷系統、生長表現分析系統與水產生物科技產品等,相關的網路監控系統不僅可以進行有效的健康管理,並可即時為養殖期間的各種問題提出解決方案。透過「生態、健康、循環、集約」的養殖型式,在提升產品質與量的同時,朝「環境友善」的方向努力,應用智慧化的新興科技提升臺灣水產養殖產業的生產力與國際競爭力,產業的永續發展便可水到渠成。 肆、瞻仰未來   臺灣在水產科技產業具有強大潛能與優勢,在新品種開發、種苗培育、繁殖與生產、養殖管理技術、飼料生產、漁產加工及行銷系統等策略,皆已發展完整之水產養殖產業技術,在國際市場上占重要一席之地。同時也從原本的養殖和捕撈者,轉變成為種苗生產、養殖管理、品種改良技術的供應者,並積極朝向基因轉殖水產生物產品功能與商業價值發展。臺灣水產養殖興盛,於養殖科技方面,一直維持高度的競爭優勢,但全球變遷對周邊海洋環境造成不同程度的影響,衝擊我國漁業,也威脅著水產養殖產業的後續發展。在邁入二十一世紀的未來,糧食供需、資源保育以及面對國際嚴峻的競爭與挑戰,都必須事先擬訂對策與應變措施,以保護國內相關產業、生態環境及人畜食品的安全。臺灣以海洋立國,未來的發展與海洋密切相關,為兼顧生產、生活及生態均衡的三生農業之發展,政府必須長期支持海洋科技的發展。強化海洋科技研究不僅能提升臺灣海洋相關研究的國際知名度、增加水產養殖產能、改良漁獲品質,提高產品的附加價值,增加經濟產值,最重要的是,透過維護海洋資源永續發展,才能真正邁向「海洋興國」的目標。

網站導覽
活動資訊
訂閱RSS
電子報訂閱