MENU iconMENU
主題專區
主題專區
2018/07/05
西班牙位於伊比利半島,內陸地區主要為溫帶大陸性氣候,北大西洋沿岸為溫帶海洋氣候,東部沿岸則為溫帶地中海型氣候,除了沿海地區,境內許多地方降雨甚少,天然環境不利於農業發展;然而西班牙政府致力於推廣灌溉農業,使得原本只適合旱作的地區也能發展園藝作物。近年來配合智慧化與現代化農業發展,逐漸推行遙控灌溉與遠端遙測系統,遙控灌溉系統通常由一台主要電腦連結到各個站點,自動化控制灌溉水量,人員也可視情況修改參數進行操作,遠端遙測系統則可追蹤參數變動對作物的影響情形,提供人們調整的依據。   2002年時西班牙參加了第一屆國家灌溉管理移轉研討會(The 1st International Workshop on Irrigation Management Transfer in Countries with a Transition Economy),此研討會旨在極力發展各國的灌溉農業產能,強調現代化灌溉系統之設置、經濟與用水管理制度等問題。2005至2010年間,西班牙在追求現代化灌溉技術的計畫中,設置了260個用水公會,這些系統所涵蓋的面積約占一百萬公頃;十五年後,科爾多瓦大學(University of Cordoba)的研究小組針對這些早前設置的用水公會設計調查問卷,以追蹤長期以來這些現代化灌溉系統的維持與營運狀況。   推行現代化之願景為,利用遠端自動控制系統降低電費成本,不僅可節省農民勞動力,且相關技術能協助有效利用水資源與能源,提升農業系統的永續性。然而,問卷調查顯示其中的15%已不再持續使用灌溉系統,而其中19%的系統無法控制一半以上的液壓閥,顯示農民在轉型至現代化的過程中勢必面臨適應期,在適應期中若無法具體看見現代化灌溉技術所帶來的良好效益,則不願意進行例行性的維護,甚至不再利用這項技術。【延伸閱讀】利用衛星遙測改善加州酒鄉的水源管理   為了完整建立現代化灌溉系統,政府與這些公會已付出250萬歐元的成本,未來這些標準化的設備將會全面推行至農村當中,配合長期保固與持續培訓農民以防止用戶放棄轉型;此外也將繼續推動技術更新,強化現代化灌溉系統前瞻性。
2018/06/29
近年來,隨著規模化養殖之情形增加,豬咬尾症發生機率也越來越多,造成豬隻咬尾的原因複雜,包含營養缺乏、環境不適、氣候改變、寄生蟲或疾病感染,甚至是任何造成豬隻不安的緊迫因素均可能導致嚴重不一的咬尾症狀。被咬傷的豬可能因出血過多造成身體虛弱,或是傷口受到其他細菌或微生物感染而影響健康,而其他豬可能受到傷口附近的血腥味吸引,也攻擊同一隻受傷的豬。因此飼養者需要時常巡視觀察,盡早發現並將傷害同伴的豬隻隔離;或是在飼養環境中放置鐵鏈、輪胎等讓豬啃咬的玩具,以減少豬隻因好奇或不安而攻擊同伴的情況。   為了減少豬隻咬尾的情形,部分豬場會先採預防式斷尾之手段,控制好合適的飼養密度並定時定量給予營養充足之飼料;然而動物福利之相關意識逐漸上漲,越來越多地區反對實行先給予豬隻傷害的斷尾剪牙之預防性手段。有鑑於此,英國蘇格蘭農業學院(Scotland's Rural College)與愛丁堡大學(University of Edinburgh) 、Innovent Technology公司合作,利用3D攝影機與視覺演算法自動量測23組仔豬尾巴的姿勢,藉此評斷豬隻尾部的受傷狀況與受傷時間,有助於飼養管理者於豬隻受傷前期就先發現狀況,減少傷害擴大。【延伸閱讀】開發以攝錄設備自動分析系統解開蜜蜂八字舞行為背後隱含之蜜源資訊   相關研究發表於<Plos One>
2018/06/19
遙測技術最早起源於登高望遠時以相機記錄大地圖像,隨著科技發展,飛機、直升機、衛星等遙測載台種類越趨多元,圖像拍攝與分析判讀技術也日益精進,有助於人類掌握環境資訊的分布情況。廣義的遙測技術是指不經接觸物體表面而取得物體、地區或現象之資訊的技術,狹義的遙測技術則是以電磁波為主要探測訊息,藉以觀測大地現象;遙測技術需考慮遙測感應能量的類別、光源、觀測對象、能量在大氣中的傳遞與干擾。   智慧農業的興起,將原本用於氣象或地理觀察的遙測技術應用於農業觀測,Landsat 系列衛星為美國太空總署 (National Aeronautics and Space Administration,NASA) 的地球觀測衛星,自 1972 年 Landsat-1 發射至今已持續在地球上連續觀測近40年,主要利用可見光與紅外光等電磁波光譜特性的差異收集地面圖像。而玉米和大豆是美國主要的經濟作物,準確得到作物生長的即時狀況有利於進行市場評估、作物保險、土地租賃與供應鏈物流等各種決策進行;然而過去的技術仍無法良好區分玉米田和大豆田間的差異,美國農業部在收穫後四至六個月才能提供全國玉米和大豆種植面積。   伊利諾大學(University of Illinois)自然資源與環境科學系分析了三顆Landsat衛星所收集2000-2015年的光譜數據,發現短波長紅外線(Short Wave. Infrared,SWIR),對於鑑別玉米和大豆之間的差異非常有用。SWIR波段能有效反映葉片中水分含量,搭配Blue Waters和ROGER超級電腦的深度神經網路(Deep Neural Network,DNN)以學習及分析數據,就可順利區分大豆和玉米植株間的差異。【延伸閱讀】日本佳能MJ集團利用攝影相機與AI技術掌握作物採收   此研究所有實驗均在伊利諾州中部進行,評估哪些資訊對於訓練分類的機器學習模型最有用,以及空間和時間因素如何影響分類狀況,這項新技術可以在7月底之前(種植後兩到三個月)區分兩種主要農作物,並達成95%以上的精確度。   相關研究發表於<Remote Sensing of Environment>
2018/06/15
動物體型大小除了與生長期時的食物營養成分有關,動物體內本身所帶有的基因也可能影響個體的成長狀況。HMGA2就是一種廣泛存在於哺乳類動物體內的高度保守性基因,目前已知此基因表達狀況會影響人與小鼠的個體尺寸與生長。在小鼠體內中其中一個HMGA2的等位基因失活會造成體重減少20%,兩個等位基因接失活則會使得體重減少60%,而人類HMGA2基因序列部分缺失會導致個體身材矮小。   北卡羅萊納州立大學(North Carolina State University)的研究人員於先前研究已發現小鼠基因 HMGA2 與 HMGA1 與體型和身體質量指數 (Body Mass Indicator) 相關,本次透過基因編輯與體細胞核轉移(somatic cell nuclear transfer,SCNT)製造出HMGA2基因缺陷的豬隻,透過26週的生長觀察,發現HMGA2-/-的豬隻體重較正常豬隻減少75%。此外,HMGA2的基因缺失影響了胎兒在母體子宮內接受的資源,若是子宮內同時存有正常與HMGA2-/+、HMGA2-/-等個體,則HMGA2-/-個體無法在懷孕期間存活,且HMGA2-/-與子宮絨毛接觸不良,顯示子宮跟胎盤間的連結較差;若子宮內只存有HMGA2-/-,這些胎兒就能存活並正常發育。【延伸閱讀】全球首例以體細胞核移植成功之複製猴   此項研究不但讓人們更了解動物生長發育的過程,未來也可以將相關觀念應用於跨物種的器官移植當中,藉由調控移植個體所摻生的器官大小,使其大小更符合受贈者之需求,並避免移植後的過度生長。
2018/06/14
經過美國食品與藥物管理局估算,美國每年大約有4,800萬則食物中毒病例,造成約128,000住院次數和3,000人死亡。其中大腸桿菌O157:H7會導致感染病患輕重不一的腹瀉,且5-10%病人會引起溶血性尿毒症候群,而其他血清型如O26、O45、O111、O103、O104、O121及O145等亦可能造成類似症狀。   嗜菌體(phage)屬於病毒的一種,以細菌為宿主,並且只能寄生於活菌內,部分是菌體可造成寄主細菌裂解。因嗜菌體具有可將遺傳物質注入細菌的特性,故早已成為分子生物學技術上廣為利用的核酸載體;美國普渡大學(Purdue University)則利用此特性,將嗜菌體作為檢測食品污染的新工具。   推測食材或食物被細菌汙染時,只要噴灑噬菌體於檢體並加上適當的反應物,若檢體確實受到汙染,反應物則會因分解而發光,光訊號可透過智慧型手機與專用程式轉化為一般圖像,即使是一般民眾也能輕易理解汙染狀況。此種智能手機與噬菌體的跨域結合技術可提供農場或食品加工廠進行現場檢測,減少樣本檢測時間,作者也創立Phicrobe公司進行技術的商業化,未來除了食品致病菌外,也希望能用於檢測水中污染物。【延伸閱讀】非侵入性可攜檢測設備的發明讓植物病害檢測更為快速便利
2018/06/13
近年來衛星多重光譜成像(multispectral image,MSI)與無人機技術逐漸發展完備,這些無人操作技術能夠遠端幫助農民及時且主動性的管控作物的生長情形,利用光譜強度差異轉換成植被的健康狀況,讓農民可依據作物當下的健康狀況差異給予適合的水、養分或農藥等處理;然而在高空中進行的多重光譜成像需要依靠昂貴的相機拍攝及掃瞄農地,對於想提升管理效率與降低成本的農民而言,無法作為廣泛使用的選項。   南澳大利亞大學(University of South Australia)與阿德萊德大學(University of Adelaide )和LongReach植物育種公司合作開發新的技術,使用無人機在20公尺的高度進行每兩秒一次的圖像收集,利用RGB(R:紅色、G:綠色、B:藍色)彩色圖像分析小麥田中的狀況,並藉由深度神經網路學習與比對MSI高空測量與RGB地面測量的圖像差異,顯示植被指數(vegetation index,VI)與高度相關,而圖像的空間配置、光譜及時間資訊有助於估計小麥的植被指數。經過驗證後,團隊認為未來可以經由成本較低的RGB圖像與深度神經網路評估以進行VI測量。【延伸閱讀】廣積深耕智慧農業 茶葉自動包裝機導入北部茶園   此研究由澳洲研究委員會(Australian Research Council)和穀物研究開發公司(Grains Research and Development Corporation)共同發起,相關研究發表於<Plant Methods>。
2018/06/12
隨著天然資源不斷耗損,永續發展的相關議題逐漸為各國所重視;然而世界上大多數的商業性漁船仍然缺乏捕撈水產的數量控管與評估,長久以來,瀕臨絕種的物種數量逐漸增加,無法持續捕撈的魚類比例達到了63%以上。但全球超過100萬人以魚為主要蛋白質來源,因此對糧食安全產生了重大威脅。   為解決此問題,歐盟科研計畫Horizon 2020中「釋放水生生物資源的潛力(Unlocking the potential of aquatic living resources)」策略旗下有51個計畫,其目標是管理、永續開發和維護水生生物資源,盡量從歐洲海洋和內陸水域獲得社會和經濟效益的最大報酬,並保護生物多樣性。其中,為了解決魚類的「兼捕」問題,2018年初成立了「SMARTFISH」四年計畫,該計畫是由挪威的SINTEF Ocean研究機構協調,團隊包含了挪威、丹麥、土耳其、法國、英國和西班牙的大學、研究機構和漁業組織等。【延伸閱讀】新的人工智慧演算法可以更好地預測玉米產量   該計畫目的是開發出一套高科技系統,透過自動化數據收集,能夠優化捕魚效率並降低人類行為對海洋生態的影響;同時也能為漁民提供漁業法規的遵守證據。研究團隊中的東英吉利大學(University of East Anglia)計算科學學院團隊將專注於開發圖像處理與電腦學習等相關技術,可用於分析閉路電視和手持性裝置拍攝的圖像,幫助提高漁民的捕撈效率,並協助提供新的漁業資源數據,避免人為的捕撈壓力與生態破壞,並增進漁業資源管理。期望通過智慧技術發展永續和環境友善之漁業,提供全球經濟背後的優良競爭性和良好的水產養殖環境,促進海洋產業創新。
2018/06/08
核磁共振攝影(magnetic resonance imaging,MRI)為非侵入式的造影工具,其原理在於把人體放置於強大磁場中,再利用特定的無線電波激發,使得人體組織中的氫原子核發生共振,將不同器官或組織間的訊號變化轉換成電腦成像,強度則以Tesla表示。由於MRI具高解像力、可進行多方向掃描、提供三維影像且不另外產生輻射影響,因此成為近年來臨床診斷上相當重要的影像工具。   伊比利亞火腿是西班牙的傳統食物之一,具有「火腿中的勞斯萊斯」之稱,並由國家法令規範法定產區、肉品來源與分級,因其特殊的風味、香氣與口感,市場價值極高。而MRI除了應用於醫學中觀察人體器官與組織的病變,因MRI在拍攝期間並不會造成食品損傷,故西班牙埃斯特雷馬杜拉大學(University of Extremadura)更將其應用於分析伊比利亞火腿的肉質。【延伸閱讀】澳洲Genics公司所提供的新工具能夠用來對抗蝦類十足目虹彩病毒   經過拍攝後的圖像能以電腦進行視覺計算分析,經過統計後就能在不切開火腿的前提下預測熟成期間的火腿內部肉質,包含水分多寡、脂肪分布與鹽分擴散情形。此研究能夠提供珍貴肉品加工業另一種即時控管品質的方式,未來也可用於監測其他不便提前破壞外觀的食品,幫助穩定食品在發酵或熟成期間的品質。   相關研究發表於<Journal of Food Engineering>
2018/06/04
乳牛的乳腺炎多半因乳房組織受傷或微生物感染所引起,是酪農業中成本損失最高的疾病。根據美國農業部統計,國內有96.9%的廠商以抗生素控制與治療乳牛的乳腺炎,雖然抗生素能成功抑制細菌滋長,但卻無法修復受到細菌創傷的乳房組織;就算乳牛恢復健康,也無法回復原有的產奶量,且過度使用抗生素需負擔抗藥性產生或抗生素殘留之相關風險。  為了消除乳牛乳腺炎的問題以及減少因疾病所產生之損失,美國康乃爾大學(Cornell University)獸醫學院提出使用mammosphere-derived cells (MDC)作為乳腺炎治療之替代療法的相關基礎想法,文中探討這些牛乳腺幹細胞的分泌物如何促進受損組織的癒合和再生,及如何去除乳腺中的有害細菌。研究人員發現這些幹細胞的分泌因子具多重作用,能促進新血管的形成與細胞的遷移,幫助癒合因乳腺炎損傷的組織。此外,部分分泌因子能保護上皮細胞免受細菌毒素的侵害,而另一部分則為具抗生素性質的抗微生物肽。  因FDA已核准之藥物可有效對抗格蘭氏陽性菌,因此幹細胞治療可用於補充治療以減少格蘭氏陰性菌所帶來的傷害,另一方面也確定MDC分化為產乳細胞的潛力。此研究是第一個詳細介紹牛乳腺幹細胞分泌物與導致乳腺炎細菌間的關係,可做為幹細胞應用於動物臨床治療的基礎。  相關研究發表於<Scientific Reports>
2018/05/30
亨丁頓舞蹈症(Huntington's Disease,HD)屬於一種神經性退化疾病,為第四對體染色體的顯性遺傳,發病後會導致腦部神經細胞持續退化,造成病人無法控制自身運動,甚至發生身體僵硬與智能衰退的情形,透過電腦斷層掃描可明顯見到腦部萎縮狀況。多數患者為成年後發病,從初期的平衡失調、情緒異常到中後期的不自主運動與認知能力衰退,患者常死於跌倒、感染或其他相關併發症,目前尚無治癒該病症的方法。   早期關於此疾病的病程研究多以小鼠作為模型動物,然而小鼠與人類親緣關係較遠,以小鼠作為研究模型時無法完整呈現人類生病時的病況進展。中國暨南大學與美國埃默里大學(Emory University)醫學院合作,利用基因編輯(CRISPR/Cas9)技術將亨丁頓舞蹈症的基因插入(knock in)豬體內,並順利以種系遺傳產生F1與F2子代的病豬,並且順利觀察到豬大腦中紋狀體變性與運動失調的症狀;藉由與人類更相近之大型動物病況觀察,更能夠幫助科學家們了解與探討疾病的完整變化與基因治療研究。【延伸閱讀】調控HMGA2基因表現能夠控制豬隻體型   除了亨丁頓舞蹈症,未來也許還可以藉由CRISPR-Cas9基因編輯技術開發阿茲海默症(Alzheimer's disease,AD)、帕金森氏症(Parkinson's disease,PD)或漸凍人症(Amyotrophic lateral sclerosis, ALS)的大型動物模型,或是藉由這些技術檢視開發基因治療的臨床測試應用性。   相關計畫得到廣東省高水準大學建設經費的資助,同時也得到國家自然科學基金委重大研究計畫和重點研究計畫、廣東省科技計畫的支持;相關研究則發表於<Cell>。
2018/05/29
水稻是熱帶季風地區主要糧食作物之一,水稻品質及產量與人們生活息息相關。面對氣候變遷、自然資源短缺等挑戰,並因應人們對於高品質、多功能等生活要求,如何更有效率的完成育種,提高水稻品質以應對病蟲害威脅、營養或健康需求,是研究人員需要共同努力的目標。全球共計保留了78萬份水稻種源,需要適切且良好的利用這些資源,才能真正有利於人類社會。   為弄清水稻基因組中隱藏的秘密,2011年9月份,中國農業科學院聯合國際水稻研究所等單位共同啟動了「3000份水稻基因組研究計畫」,樣本來自於中國、南亞及東南亞等89個地區,該研究通過全基因組定序、建立基因圖譜、SNP (Single Nucleotide Polymorphism)分析與進行族群分類,將水稻品種由傳統的5個亞群增加為9個,分別是東亞(中國)的秈稻、南亞的秈稻、東南亞的秈稻和現代秈稻品種等4個秈稻群體;東南亞的溫帶粳稻、熱帶粳稻、亞熱帶粳稻等3個粳稻群體;以及來自印度和孟加拉的Aus和香稻。為了深入了解水稻基因的進化與馴化歷程,進行蛋白質序列比對以推估新基因出現的時間,並討論不同水稻間的基因變異與遺傳多樣性。【延伸閱讀】運用生物工程技術將可望提升近三成水稻產量   傳統育種在親代植株的雜交過程中無法得知預期的基因性狀出現在何種位置,只能依據經驗判斷;透過如此大規模的資料收集與整理分析,有助於加快優質水稻的開發,未來將致力於加強遺傳資訊平台與分子育種的整合,提高重要農業性狀的分子育種效率。此外,該研究首次提出了秈、粳亞種的獨立多起源假說,秈稻中很多基因並不存在於粳稻中,反之亦然;而水稻依據地緣不同,長期演化後會形成獨特的基因群,因此研究人員認為秈稻和粳稻屬中性名詞,不應帶有明顯的地域性差異。   該研究由中國農業科學院作物科學研究所、聯合國際水稻研究所、上海交通大學、深圳農業基因組研究所、美國亞利桑那大學(University of Arizona)等16個單位共同完成,相關研究刊登於<Nature>。
2018/05/28
青蒿是一年生草本植物,屬於傳統中草藥之一,也是抗瘧疾藥物-青蒿素(Artemisinin)的天然來源。瘧疾是一個具全球影響性的傳染病,根據世界衛生組織的統計,光是在2016就有約2.16億件新發生的瘧疾病例,造成44.5萬人死亡,且有近10億人生活於高風險地區。青蒿素是由中國中醫科學院的屠呦呦研究員所帶領的團隊發現,目前已成為世界衛生組織所推薦的抗瘧疾的標準治療藥物之一,挽救了數百萬名瘧疾患者的生命。中國重慶市西陽縣是世界上最大的青蒿原料生產地,當地的青蒿種植已具有一定規模;然而青蒿素在青蒿中含量極低,故現今也有以酵母菌合成前驅物青蒿酸,再以人工進行化學合成的作法,惟成本仍居高不下,因此目前仍是以農業生產之青蒿作為最主要的原料。   由於青蒿素為青蒿所產生之次級代謝產物,了解青蒿基因體與轉錄體的調控有利於科學家釐清青蒿素的合成途徑與參與調控的基因,幫助挑選適合植株或進行轉基因工程,使得青蒿素得以大規模生產,以滿足全球日益增長的需求。研究人員透過定序與資料庫比對,發現了與青蒿素合成調控有關的三個基因-HMGR、FPS和DBR2,所培養的轉基因植株中的青蒿素與二氫青蒿素(dihydroartemisinin acid)含量也較野生株高出許多。此外,還發現AaMYB2基因能夠調節青蒿素的合成途徑中的多個特異性基因,顯示相關的轉綠因子也有可能參與青蒿素的合成。【延伸閱讀】利用霰彈槍定序法揭示落花生的全基因組遺傳資訊   目前研究人員培養出了高青蒿素含量的青蒿品系,青蒿素含量可達佔葉片乾重的3.2%,相關的種子已送到馬達加斯加進行田間試驗,未來目標是開發青蒿素含量達5%的植株品系,以期降低植物來源青蒿素的價格,造福需要的病患。   相關研究發表於<Molecular Plant>

網站導覽
活動資訊
訂閱RSS
電子報訂閱