MENU iconMENU
主題專區
主題專區
2018/05/25
介電彈性體(Dielectric elastomers,DE)是一種新型材料,只要加上電壓就能使此材料發生形變,具有重量輕、價格低、運動靈活、易於成形和不易疲勞損壞等優點,能夠用來製作柔軟、輕巧的人造翅膀或是軟性機器人。介電彈性體致動器(Dielectric Elastomer Actuator,DEA)則能將電能轉化為機械能,不但產生噪音低,且驅動變化大,適合用於人造肌肉製作。   美國加利福尼亞大學(University of California)利用DEA做出透明的鰻魚機器人,可有效減少螺旋槳噪音對海洋生物的影響,便於進行水中觀察並降低機器人活動時對生物的傷害。此機器人裝有電線,可施加電壓到周圍海水及人造肌肉內部的水囊中,使得海水帶有負電荷,而機器人內部肌肉則有正電荷。電荷影響導致機器人肌肉彎曲,幫助機器人進行游泳運動;此外,這些電流變化十分微小,不會危害到周圍的水中生物。此鰻魚機器人最大游泳速率達到1.9毫米/秒,弗勞德效率(Froude efficiency)為52%,在可見光中平均透明度為94%,近似於海洋鰻魚(leptocephalus)。【延伸閱讀】新加坡使用天鵝機器人監測水質   此研究最大的突破在於使用環境作為機器人設計的一部分,同時也簡化了裝置,而人造肌肉內的腔室也可填充螢光染料,以利於在水中追蹤機器人動態。除了實驗室測試外,此機器人也於斯克里普斯海洋研究所(Scripps Institution of Oceanography)的水族館進行測試,未來將持續改進機器人的潛水深度與增強結構穩定性,強化機器人的利用性。   相關研究發表於<Science Robotics>
2018/05/17
歸功於現代繁養殖技術的進步,母豬一胎可以生出數量較多的小豬,泌乳量也較多;但為了維持小豬的存活,母豬需要進食更多飼料以產生母乳,這也容易導致母豬的體溫增加,現今母豬的產熱量比1980年代的母豬高出55%-70%。由於豬屬於恆溫動物,皮下脂肪較厚且汗腺不發達,不容易通過皮膚散熱;一但豬隻體溫過高就需要減少進食量或是以喘氣散熱,遇到炎熱潮濕的夏季有可能導致豬隻中暑、性慾降低、泌乳量減少、難產或流產等情形。根據估計,美國豬肉產業每年須付出超過3.6億美元的成本以解決豬隻熱緊迫( Heat Stress )的問題。   使用空調冷卻整個房間或畜舍花費的電費較高,且降溫速度緩慢,不但不符合經濟效益,也不符合聯合國所提出之環境永續目標。美國普渡大學(Purdue University)農業及生物工程系開發出一種豬隻專用的冷卻墊,將2英尺×4英尺的鋁板架設於高密度聚乙烯底座與銅管上,並加裝監測溫度的感測器,需要散熱的母豬能躺在散熱墊上,藉由感測器決定何時更換銅管中的冷水,以保持母豬體表涼爽。【延伸閱讀】便攜式設備幫助偵測假酒   在高達35℃的環境溫度測試中,母豬呼吸次數可從每分鐘120次呼吸降至45次,且冷卻墊可明顯降低母豬的陰道與直腸溫度,冷卻水流速越快,效果越佳。此外,由於散熱墊面積只能容納一隻母豬,因此需要保溫的小豬在餵奶時不會直接接觸到冰冷的散熱墊。面對全球暖化,使用此散熱墊可以減少豬隻降溫所需的能源與相關成本,目前開發者正積極找尋相關的技術授權管道,相關論文則發表於〈The Professional Animal Scientist〉、〈Applied Engineering in Agriculture〉及〈Livestock Science〉。
2018/05/16
工業革命後的人類活動需要燃燒大量的石化燃料,雖然短期內可產生大量的能量以供社會進步與工商業活動發展;但這些石化燃料同時也是早期固定並儲存在地球上的碳,短時間內大量的碳排放已使得全球暖化逐漸嚴重,全球溫度提高會導致現有之生態系統改變,對人類造成不良後果。因此近年來各界極力推行生物能源碳捕集與封存(Bioenergy Carbon Capture and Storage,BECCS)的概念,以期有效減少大氣中的二氧化碳。   美國康乃爾大學(Cornell University)與英國Cinglas合作,提出了一個BECCS系統,此系統中包含一個121公頃的藻類培養設施與一個2,680公頃的桉樹森林。其中桉樹可作為生物質燃料,進行熱電聯產(combined heat and power,CHP);而藻類與大豆相比,每公頃可產生27倍的蛋白質,除了具固碳作用外也可收集脫水後利用。研究中評估了生產總成本、用水量、生物量、營養素與碳吸收量、產生電力與環境影響等,與種植大豆相比,此系統除了可產生與大豆相同的蛋白質以外,還能額外產生61.5TJ的能量且每年封存29,600噸二氧化碳,因此可視為是一種具潛力的二氧化碳的負排放系統。【延伸閱讀】紅樹林藍碳估算新方法   然而,BECCS系統所座落的環境會影響系統運作時的效率和營運成本,且藻類後續的應用領域也會影響其銷售價格,因此此研究中所探討的成本計算只能作為一時參考,但也提供我們設置固碳系統的嶄新想法。
2018/05/14
大氣、海洋和陸地是地球上的三大碳儲存庫,工業革命發生前,人類活動所製造的二氧化碳穩定地在此三大儲存庫中循環;但工業革命後,人類對能源的需求逐漸提升,短時間內大量燃燒石化燃料後產生的二氧化碳除了造成溫室效應外,也會透過碳循環進入海洋,造成海洋酸化(Ocean Acidification),使得動物碳酸鈣外殼、骨骼與珊瑚礁的融解速度大於製造速度,除了不利其生長,更會影響現今海中食物網的穩定性。   先前瑞典的研究顯示,在人工模擬環境Mesocosm中,隨著海水酸性增加,大西洋鯡魚(Clupea harengus)的幼苗生存率會隨之提升。而德國基爾亥姆霍茲海洋研究中心(GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel)則針對酸化環境中浮游生物(食物量)的變化,間接觀察二氧化碳對鯡魚的存活性影響。該系統將鯡魚幼苗暴露於高二氧化碳環境(研究者預測本世紀末將達到760 μatm pCO2)長達113天,結果發現魚苗存活率顯著提高了19±2%,經過浮游生物的族群分析,認為可能因酸性環境導致浮游生物增加,使得鯡魚等高級消費者間接受惠;且鯡魚的產卵環境主要靠近海底,比起在海水表面產卵的鱈魚更具有存活優勢。【延伸閱讀】海洋酸化將會影響魚類嗅覺   除了酸鹼值變動,海洋溫度也是影響物種遷徙的因素,由於冷水溶解的二氧化碳較多,因此海中的二氧化碳能透過溫鹽環流帶到底層海水儲存。若海洋環境未來持續改變,則區域性海域的生物結構可能因其環境適應性不同而發生變化。   相關研究發表於<Nature Ecology & Evolution>
2018/05/11
農業發展歷史悠久,各地農業隨著漸趨專業化的發展,風險管理問題逐漸浮上檯面,因此越來越多跨領域專家爭相投入於農業環境監測與風險預警的領域。其中,農作物的病蟲害預警系統是農業風險管控中不可或缺的一環,為了強化資訊蒐集,提供客戶即時與方便的服務,以色列的Saillog公司推出免費的手機應用程式-Agrio,用戶可拍攝疑似生病的作物照片並上傳到平台,經由人工智慧學習和視覺辨識計算以辨別植物病害,使其在短時間內收到作物診斷和處理建議。     Agrio的發展經過以色列、美國和印度的農藝師測試,於2017年時就可供Android和iPhone系統下載使用,此程式具有11種語言,包含英語、法語、阿拉伯語、印地安語、坦米爾語和越南語等。若是遇到較不常見的作物病害,團隊中的農業專家也能另外提供協助,相關結果也能紀錄於程式資料庫中以修正人工智慧的學習;隨著時間的推移,病害預測與判斷將會更趨精確。【延伸閱讀】結合小農經驗與人工智慧將有助於提升玉米產量   此外,Saillog最近宣布推出一項新功能-AgrioShield警報系統,能夠通知農田附近地區發現的病蟲害,並且提出農民可採取的早期預防方式以減少後期的產量損失;目前AgrioShield已發送了蚜蟲、香蕉葉斑病和晚疫病等7種已知病蟲害感染的警報。雖然Agrio是免費程式,但使用Agrioshield需負擔每月2美元的成本,公司考慮未來將降低價格以提高使用普及率。
2018/05/09
擁有潔淨水源是人類生活的最低保障之一,然而隨著人類活動與工業汙染的增加,造成可用水已逐漸匱乏。地球上的淡水資源有限,主要包含在地底蓄水層、地表逕流和大氣層中,以及少量的海水淡化而得。居住於汙染地區的人們可能因為不乾淨的水源而感染疾病,或是為搶奪珍貴的淡水資源而造成國際關係的緊張。此外,由於全球氣候變遷漸趨明顯,使得極端天氣出現的頻率越來越高,在嚴重的天然災害發生後可能會發生無法預測的缺水情況,因此尋找穩定供應乾淨水源的方式便顯得十分重要。   地球上約有98%的海水水體,若是能找出適當的海水淡化方式,將對於人類未來生活有莫大助益。目前海水淡化方式主要為薄膜法及蒸發法兩大類,薄膜法是利用各式纖維薄膜隔絕海水中的鹽分,從而過濾出淡水以供人類使用;蒸發法主要是利用太陽能或其他能量來源加熱海水,蒸發出的水氣收集並凝結後就成為人類可使用的淡水。【延伸閱讀】新型微生物菌株A6可幫助處理水污染   考量到現今使用技術的轉化成本與能量耗損,海水淡化一直無法完全普及到現在的人類生活。美國德州大學奧斯汀分校(The University of Texas at Austin) 材料科學與機械工程系利用聚乙烯醇(polyvinyl alcohol,PVA)和聚吡咯(polypyrrole,PPy)開發出一種混和水凝膠,同時具有可吸收太陽能的半導體性質和親水性質,這種水凝膠可幫助人們直接利用環境中的太陽能進行海水蒸發與淡化。經過室外測試,每天的蒸餾水產量高達18-23公升/平方公尺,且此種水凝膠能夠依據現有的海水淡化系統的需求進行改造。   研究人員採用死海中的水進行實驗,死海水體通過水凝膠後成功減少鹽度至美國環境保護署和世界衛生組織認定的飲用水標準,此技術目前已進行專利申請,未來也朝向商業化目標而努力,以應付全世界對淡水水體的需求。   相關研究發表於<Nature Nanotechnology>
2018/05/04
甜度、口感、質地、顏色、尺寸、品種、栽種者、栽種地、生長環境是否優良、如何催熟、運輸時間以及營養價值多少等,究竟怎樣的番茄才是消費者想要的?一篇公開在農業未來(Future of Agriculture)網站的評論文章中,作者提出了未來農業區塊鏈(Blockchain)可能的雛形。過去科學家們叫針對農產品本身進行改良,透過強化作物的遺傳特性以符合鮮食、烹調或加工需求;若農產品的生產能夠配合大數據及區域經濟模式之應用,將能為農業帶來新一波革命。   文章中以番茄為例,農夫可以透過不同感測器對作物生長狀況(如溫度、濕度、光照等)進行監測,資料輸入至雲端後能成為每一顆番茄的生產履歷;而餐館、零售商或蔬果供應商則將消費者採買數據連結到番茄種植數據庫,使農夫更能準確依品種、條件等市場需求種植,平衡供需關係。美國新創公司Ripe.io就是透過這樣的服務,收集特定種植者的生產數據,並分享訊息給餐館或消費者。   雖然一般的交換資訊只存在於訊息雙方,並不需要用到區塊鏈規模,但面對多方消費者及多方供應商的情況,區塊鏈應用優勢就會浮現,搭配自動化感測器將數據隨時上傳到雲端,也能減少生產者不斷紀錄的麻煩。   此外,作者於另一評論提到區塊鏈在農業的五個潛在角色: (1) 提高食品安全:提高供應鏈透明度,間接淘汰條件不良之供應商,也可以在發生食品安全事件時快速查明問題來源。 (2) 建立可追溯性:不論消費者於何處購買商品,均能了解商品來源與加工運輸過程,防止仿冒產品充斥市面。 (3) 降低交易成本:透過區塊鏈資訊的幫助,創建更透明和高效率的供應鏈,集中原來散落四方的貿易能量。 (4) 開放新市場:資訊透明化之後,就不需要額外評估各方的可信度和執行能力,也不需要中間人和額外的保證金,直接建立信任和責任制,有效打開陌生市場。 (5) 便利後勤調控:農產品的保質期通常很短,透過建立在區塊鏈上智慧物流系統,就能提供更有效率的運輸與分配貨品。【延伸閱讀】世界自然基金會推出區塊鏈平台-OpenSC以增進供應鏈透明度   然而,距離區塊鏈真正應用於農業區域經濟還有一段路要走,不僅需討論農場內部的優化流程及數據處理責任,還要取得明確的監管共識;此外,系統整合也需要花費的人力與物力,因此需要再經過更多的評估,審慎進行為宜。
2018/05/02
近年來資訊技術發展快速,無論是資料收集、儲存與分析資訊的方式均有重大突破,目前全球98%以上的信息都是以數位格式儲存的,除了搭配網路及各項軟硬體開發應用,機器自學系統的培養也是另一個熱門的開發項目。而IT技術於農業及食品業中應用廣泛,包含環境監控、即時圖像、遠端操控等,隨著智慧管理的觀念逐漸普及,如何良好使用大數據與兼顧農民利益將是未來主要議題。   由28個生產商、國際集團、供應鏈公司、環保組織和環保組織兩黨組成的聯合會聯署寄信給美國參議院農業委員會主席Pat Roberts與眾議院議員Debbie Stabenow,希望他們支持2018年農業數據法案〈Agriculture Data Act of 2018 (S. 2487)〉。該法案將加強美國農業部對生產數據的管理,除了便於研究各項農業措施之影響,也能同時兼顧農民的隱私。【延伸閱讀】歐盟推動大數據技術整合幫助提升生物經濟價值   為了提高農業生產者的利潤、保護環境與降低生產風險,故須保障適當的數據收集、審查與分析行為。S. 2487指示美國農業部創設安全數據庫與保密程序,除保障現有資訊外也同時保護個別農場生產者的機密資訊,禁止出售個別生產者數據,以提高生產者自願提供農業數據的機會。此外,也推動優化各農業相關部門的橫向資訊互通,整合作物產量、土壤健康與保護措施等其他的外部數據來源,並允許研究者公開關於土壤健康,產量變化和風險之間的重要總數據,這些資訊也可作為學術研究、技術援助、未來經濟規劃等依據。
2018/04/25
除了方便人為操縱的自動化機械以外,機器人開發也是現今智慧化農業中炙手可熱的項目。機器人能夠全自動或搭配人員採半自動執行,幫助節省勞力與時間,還能搭配大量數據收集與整合,幫助使用人員進行資訊歸納與提供有利情報。   由美國伊利諾大學(University of Illinois at Urbana-Champaign)團隊開發的TerraSentia crop phenotyping robot於3月14日在2018年能源創新高峰會的技術展示會上亮相,機器人能夠在作物之間自動行進,使用各式感測器與攝影機進行偵測,並將數據即時傳送至操作人員的手機或電腦,只要搭配相應的應用程序就能使操縱機器人。   研究人員表示,TerraSentia是一種具學習能力的機器人,透過良好的機器學習演算法,就能夠先教導機器人辨識常見的作物疾病與性狀測量,如植物高度、葉面積和族群量。經過多次學習後所收集的資訊會越趨正確,而自動化數據收集和分析能夠協助了解不同品種作物之間對環境條件所產生的反應,幫助農民改善育種和栽種條件。【延伸閱讀】透明且如鰻魚般柔軟的水下機器人   一般認為,高度智慧化的機械裝置通常因體型笨重,較適合大面積且單一化栽培之區域。然而TerraSentia結構較為輕便,重約10公斤,寬約33公分,方便運送到田間,也容易於植株間行進,可同時掌握操作上的精確度與高效率。此種機器人不但在美國具有使用潛力,在巴西、印度等農業發展中國家亦是如此;由於這些地區通常面臨更加惡劣或多變的氣候環境,因此由機器人幫助掌控個別植株的遺傳特殊性更有助於農民管理和挑選適合的植株,也能夠排除人為辨認上的主觀認定與差異性。   美國能源部高級研究計畫局的TERRA(Transportation Energy Resources from Renewable Agriculture)計畫為開發TerraSentia提供了310萬美元的資金。今年春季,幾家主要種子公司、研究機構與海外合作者將針對TerraSentia進行現場測試,預計三年內能夠提供給農民使用,其中部分型號的成本低於5,000美元。
2018/04/20
土壤鹽鹼化(soil salinization)常發生過度灌溉及排水不良之地區,因土壤中的鹽分隨著水分由毛細作用帶到土壤表層並堆積,造成土表鹽分過高,進而影響植物生理反應及產量。近年來隨著世界各國重視糧食安全議題,土壤鹽鹼化問題也逐漸浮上檯面,目前全球約有20%灌溉地區的鹽分過高。   水稻(Oryza sativa)是世界上主要糧食作物之一,對土壤鹽分較為敏感,若種植於高鹽度土壤中會導致產量嚴重下降。為了供應穩定糧食給快速增長的人口,開發水稻耐旱與耐鹽的相關特性顯得非常重要。而中國長沙湖南大學確認水稻中的STRK1(salt tolerance receptor-like cytoplasmic kinase 1)基因表現與改善水稻在高鹽度土壤中的產量相關。【延伸閱讀】最新研究發現數個可提升高粱產量的關鍵基因   在高鹽度環境下,STRK1基因表現量較高的水稻生長狀況較對照組佳,且產量也較高,顯示STRK1可能與水稻的耐鹽特性息息相關。一般的高鹽環境會刺激細胞產生大量的過氧化氫(H2O2),影響植物正常的生理活性,使得葉片縮小、黃化、捲曲、植株矮化甚至於萎凋等情形,使得產量受到影響。而STRK1基因轉譯所產生的蛋白質會經由磷酸化作用活化細胞膜上的CatC(Catalase)蛋白質,促使其將過氧化氫分解,減少過氧化氫累積對細胞的毒害。相關發現可做為未來水稻育種時挑選的標靶基因之一,且幫助鹽分較高的土地維持一定的糧食產量。   相關研究發表於<The Plant Cell>
2018/04/18
日本的Okunota Winery酒廠利用資訊管理技術、感測器技術與網際網路的結合,減少葡萄酒產業的農藥使用。總裁Nakamura Masakazu相信改善田間微生物環境有助於生產優質葡萄酒,因此自1998年開始葡萄種植以來,公司致力於保護土壤中的環境,透過將葡萄藤靠近在一起,迫使植根深根,並且使用不施肥、減少耕作的方法,將雜草留在田中以豐富微生物的生態環境。2010年Nakamura將部分農場借給富士通的員工,該公司建議將天氣感測器系統使用於田間,此系統以10分鐘的間隔自動收集並儲存有關溫度、濕度、日照和其他環境數據;因此Nakamura產生把這些數據用於監控葡萄酒生產過程的想法。   種植葡萄的過程中,需要使用殺真菌劑以減少葡萄真菌病害的發生;但以往農民無法確切掌握疾病大量爆發的時機,需要連續噴灑較高劑量的農藥以減少病原族群量。其實真菌在孢子發芽階段最為脆弱,透過數據收集與整理,施藥期間就可集中於少數幾天,濃度也能降低;因為農藥對環境的影響縮小,使得田間微生物更為活躍,收成後製作成葡萄酒的風味也更佳。   此外,由於葡萄酒是從葡萄汁釀造,80%的味道取決於水果的質量,因此自然環境的變化也成為造就葡萄酒風味的主要因素之一。日本也持續生產具有鮮明地方特色的葡萄酒,目前全國擁有超過250家酒廠,隨著用於種植葡萄的土地面積不斷擴大,開發商也逐漸投入為特定海拔、溫度和土壤的土地提供理想的葡萄品種。   長野縣東部千曲河(Chikuma)流域的農民也開始使用IT (Information Technology)管理田間,許多新葡萄酒廠和農民在Ueda、Tomi和其他地區等10個地點設置感測器,每小時測量6次溫度、濕度、日照和降水量,農民則輸入葡萄的各生長階段和蟲害控制記錄,研究人員再收集成熟的葡萄分析成分,並對所有數據進行分析,找出生長預測與最佳收穫時間。【延伸閱讀】以大數據解決全球植物問題之時機已成熟   為了使農民更易於自行輸入成長記錄,系統正在進行介面調整與測試,希望最後能讓農民在田間單手使用。Chikuma酒谷數據中心的研究員Kameyama Naoki解釋,此計畫是收集建立品質標準的數據,以便統一葡萄酒品質,推出具地區特色的品牌。收集數據也能作為教學工具,促使農民們分享、交換經驗,有助於地區的發展與繁榮。
2018/04/17
受到疾病或意外影響,部分醫療人口需要經由器官移植才有復原的希望;雖然目前已有器官捐贈推廣及人工製造器官的研發,器官移植需求仍然龐大。以美國為例,每年就有超過十萬顆的心臟需求,但只有約兩千人能接受心臟移植;為解決此一困境,各界研究人員正努力找尋再生醫學發展之相關出路,包含3D列印技術、人造機械器官等,另外還有科學家正在嘗試製造含有兩種不同物種的嵌合體(chimaera)—希望人類器官能成功長在親緣關係較相近的豬或綿羊身上。   然而此種想法需要克服不同物種間的免疫排斥問題,成為再生醫學研究發展上的重大障礙,因此使用不同來源之多能性幹細胞(pluripotent stem cell, PSC)為另一種新的選擇,且PSC需具有良好的自我更新能力、分化多能性並與細胞移植之個體相容,才適合作為發展標的。2017年時〈Cell〉期刊已發表了關於PSC衍生物—種間囊胚互補(Interspecies blastocyst complementation),提供了在動物身上產生人體器官的可能性發展研究。   首先分離一種動物的幹細胞,注入另一物種(宿主)的胚胎中,再利用CRISPR-Cas9編輯融合胚胎的基因組防止免疫排斥,通過此種方式,人體器官就能在其他動物體內生長。2017年時研究人員已在大鼠(rats)身上培養出小鼠(mouse)胰腺,且移植胰腺可以治療小鼠的糖尿病,也成功使注入人類幹細胞的豬胚胎存活28天;然而豬胚胎中的人類細胞數量約為十萬分之一,而目前預估成功的器官移植須至少達到百分之一的細胞比率,故此研究仍有突破空間。【延伸閱讀】利用DNA檢測食物中微量的花生成份   經過一年的改進與測試,加利福尼亞大學戴維斯分校(University of California, Davis)的研究人員Pablo Ross於2018年美國科學促進會上(American Association for the Advancement of Science annual meeting)宣布創造了第二個成功的人—動物嵌合體:0.01%的人羊胚胎。但美國國立衛生研究院目前禁止公共資助人畜混合動物,且法規規定不得使此種胚胎發育超過28天,這些外在因素也限制了相關技術的發展。   雖然再生醫學中所使用的方法皆具有不同爭議,但都為面臨死亡的病人提供一線希望,直至真正廣泛應用到臨床醫療之前,仍需醫界、工程界及生物科學界共同努力。

網站導覽
活動資訊
訂閱RSS
電子報訂閱