MENU iconMENU
趨勢快訊
趨勢快訊
2018/07/30
一般而言,植物透過外界環境刺激,藉由水分變化進行膨壓運動或激素進行生長運動,以捕捉日光、水分或其他生長所需營養,例如向日葵的向光性、氣孔開闔與毛氈苔的捕蟲運動。然而,植物的移動較為被動與緩慢,植物根部的固著性使其無法像動物一樣,根據環境的即時狀況而移動至所需生長要素面前,在劇烈變動的環境下較容易因適應不良而死亡。   有鑒於此,中國的Vincross公司提出結合機器人與植物的想法,製作出可自主移動的六足機器人—HEXA,具有良好的移動與穩定功能,前方則搭載720p攝影機、測距感測器、三軸加速度計、紅外線發射器,幫助機器人「看見」前方狀況與跨越障礙。將盆栽結合機器人,就能實現植物自行即時移動的目標,幫助植物「走出」陰影與「躲避」烈日,而人們則可透過手機應用程式遠端操控機器人,或藉由MIND系統及HEXA simulator自由控制與設計機器人的動作,並上傳分享或下載其他人所編排的程式,使機器人動作更為複雜與擬人化。【延伸閱讀】沿著抹香鯨的表面移動的小型機器人    透過該機器人的發明,能夠增進植物移動的自主性及植物與人類間的互動性,未來或許可增加偵測水分或二氧化碳之感測器,或將相關技術應用於園藝領域中,減少人們於居家照顧大量植物的麻煩。
2018/07/27
德國每年有近2億立方公尺的液態糞便從畜牧養殖場流向環境,這些來自於動物的排泄物含有大量植物所需之磷與氮等元素,可作為土壤中的養分,有助於植物生長;但過多的養分反而導致土壤中微生物大量將銨態氮轉化成硝酸鹽,順著土壤緩慢滲透與汙染地下水。善用養殖動物所產生之代謝副產物可幫助減少其對鄰近地區的汙染,然而養殖場所與一般農田所處的位置並不相近,如何適當處理動物所產生的代謝副產物並轉移至農田是目前所面臨的問題。   德國蘇伊士公司與斯圖加特大學(Universität Stuttgart)弗勞恩霍夫界面工程與生物技術研究所(Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB)合作,設計出BioEcoSIM液體糞肥處理工法,首先確認磷完全溶解於液體中,利用兩段式過濾進行固液分離,再使用封閉系統中的高熱蒸氣幫助固體糞脫水乾燥,這些乾燥後的有機質可在450℃的高溫下轉化為有機生物碳;而液體部分則包含可溶性的無機鹽份,藉由化學沉澱反應產生磷酸銨鎂、磷酸鎂或磷酸鈣,再過濾回收液體中的磷,剩餘液體的則依靠薄膜蒸餾(membrane distillation)技術形成硫酸銨,最後水中只剩下微量的磷、氮及豐富的鉀,可回歸田間做為灌溉之用。【延伸閱讀】檸檬綠色經濟學   此技術可以將原本的動物糞肥回收形成有機土壤改良劑、銨態氮肥和磷酸鹽肥料等產物,不但運送更加方便,也能精確計算肥料的回收率。目前已經獲得專利技術許可,未來逐步在全國設立大型回收工廠,完成規模化與商業化進程;現今Zorbau具有一個試驗處理廠,工廠可用10立方公尺的原料,每小時生產100公斤的磷肥、100公斤的氮肥和900公斤的有機物。另一方面,通過養分回收能降低國內對進口肥料的依賴性,提升人類農業行為的永續性。    BioEcoSIM計畫由2012年10月至2016年12月的第七屆歐盟研究框架計劃資助(the 7th EU Research Framework Program),相關資訊公布於2018年5月14日至18日於慕尼黑的IFAT2018展會。
2018/07/26
水凝膠(hydrocolloids)是一類廣泛運用於生活中的水溶性聚合物,常見的水凝膠包含冷敷包、愛玉、蒟蒻等;水凝膠於食品工業中可作為增稠劑與凝結劑使用,防止食品中的水分釋放與冰晶形成,常用於冰淇淋、果凍、果醬、乳製品中,幫助改善食品質地。除此之外,水凝膠多半為不易分解的多醣聚合物,屬於膳食纖維,具促進腸道蠕動、延緩腸道吸收葡萄糖的能力、防止血糖急遽上升等功能。   果膠(pectin)是一種主要由半乳醣醛酸(galacturonic acid)構成的複合式多醣聚合物,廣泛存在於植物細胞中,可作為天然的食品添加劑來源。目前於商業上使用的果膠主要來源為蘋果渣與柑橘類表皮等水果加工副產物,經過分離後的果膠需含有65%以上的半乳醣醛酸才適用於食品工業。【延伸閱讀】酵母生產防腐添加劑的應用潛力   椪柑(Citrus reticulata Blanco cv. Punkan)雖然也屬於柑橘類水果的一員,但至今尚未有商業化分離椪柑中果膠的方式。巴西的巴拉那大學(Federal University of Paraná)則利用高溫與酸性溶液(pH1.6)從椪柑皮中分離高甲氧基果膠(High Methoxyl Prectin,H.M. pectin),產率可達25.6%。   此項研究結果可幫助椪柑產區更加有效利用果實資源,將原本效益較低的果皮轉化為果膠原料,並減少農業廢棄物,促進環境永續。相關研究發表於<Carbohydrate Polymers>
2018/07/25
根據新加坡國家環境局(National Environment Agency,NEA)的資料顯示,食物殘渣約佔新加坡廢棄物總量的10%,估計只有14%的食物殘渣有效被回收。為了有效利用這些食品廢棄物,新加坡國立大學(National University of Singapore,NUS)與上海交通大學合作,開發了一種厭氧發酵系統,能夠回收食物殘渣並將其轉化為肥料,發酵時所產生的沼氣也能用來發電與維持系統運作。   藉由微生物的幫助,一公噸的廢棄物約可產生兩百至四百瓩(kWh)的電,隨著廢棄物中所含的碳水化合物、蛋白質與脂質越高,所產生之沼氣與發電量也就越多。透過沼氣發電後部分能量可供應系統熱水與電腦、幫浦、換氣扇等需電裝置,以維持發酵時的最適溫度50℃,多餘的電力則可儲存於電池當中。此外,發酵系統中的每一個過程都能透過電腦進行控制,而各裝置上的感測器也能將排程開始、結束及異常訊號傳送至管理者手機中,以確保系統運作時的效率和安全性。【延伸閱讀】研究指出農電共生的經營模式可最大化太陽能光電轉換效率   此厭氧發酵系統裝設於可移動裝置上,每天可處理約200公斤的廢棄物,將80%廢棄物轉化成富含營養的肥料,加工後可供給於農藝或園藝所需。另外,此系統於發酵過程中能除去水份與硫化氫,因此可避免發出難聞氣味,適合用於人口密集的城市處理廚餘之用。現在研究人員正於校內持續測試,電池中儲存的電力則作為學生手機與平板充電站之用;而另一個更大的400公斤系統也正在開發中,希望未來能實際使用於當地居民生活當中。
2018/07/24
退化性關節炎是老年人常見的骨科疾病之一,常造成患者日常生活中的行為障礙,置換人工關節可幫助患者提高生活品質,是近年來醫師逐漸採用的醫療方式之一。隨著全球老年人口數量逐漸上升,人工關節需求市場也日漸擴大,而相關材料也朝向合金、聚乙烯、陶瓷等多元化發展。考量生態與環境狀況,現今社會提倡使用可再生資源製成複合材料以提升材料永續性,而這波風潮也衍伸至生物醫學產業中。   在骨骼整合手術中使用金屬植入物可能引起人體輕重不一的過敏症狀,且置於人體後依其腐蝕與磨損程度不同,具有一定的使用年限。羅馬尼亞的布加勒斯特理工大學(Politehnica University of Bucharest)利用醋酸纖維素(cellulose acetate)製成人工合金骨骼的外膜,並將白藜蘆醇(resveratrol)固定於膜上,能有效減緩金屬受到遇酸腐蝕的情況,並減少金屬離子釋放對周圍細胞所造成之不良影響,且醋酸纖維素膜的多孔性有助於誘導骨細胞移入並連接植入物;經過約6至12個月之後醋酸纖維膜會於生物體內逐漸降解,只留下與骨骼連接良好的植入物。此外,團隊也於細胞實驗中證實,白藜蘆醇有助於幫助小鼠骨母前驅細胞(preosteoblast)MC3T3-E1移動與增殖,且增殖形狀趨近於天然骨骼的構造。【延伸閱讀】最新研究發現馬鈴薯與市售能量果膠均可供運動員發揮最佳效果   在此項研究中所使用的材料取自天然來源,不但自然界中含量豐富,回歸環境時也對環境無害,若能持續發展應用,有利於減少植入手術後患者的不適與手術失敗率。  相關研究發表於<Applied Surface Science>
2018/07/23
藍綠菌(Cyanobacteria)是地球上廣泛存在的微生物之一,能夠利用以光合作用合成自身所需養分,屬於自營生物。而帶有葉綠素或葉綠體的自營生物,能經由複雜的代謝過程固定大氣中的二氧化碳,將光能轉化為化學能,提供後續生理各階段所需能量。微生物的代謝途徑十分複雜,琥珀酸(succinate)便是其中一項重要的中間產物;此外,琥珀酸也是現今石化工業經常使用的原料之一,可從石油或微生物轉化而得,藍綠菌可經由代謝過程將二氧化碳轉化為琥珀酸,若是深入探討此細菌合成琥珀酸之機制,將有助於微生物協助工業製造的發展。   日本神戶大學(Kobe University)發現實驗室中常使用的藍綠菌Synechocystis sp. PCC 6803於攝氏30至37度間,隨著環境溫度上升,代謝途中重要的有機酸產物也會跟著增加。經過分析,確認磷酸烯醇丙酮酸羧化酶(Phosphoenolpyruvate Carboxylase,PEPC)參與的代謝過程中重要的速率決定步驟,因此使用基因工程技術改變了藍綠藻Synechocystis sp. PCC 6803,將其生產琥珀酸的速率提高至先前研究報告中的7.5倍。【延伸閱讀】燻蒸劑對土壤健康方面的最新研究   此系列研究有助於人類進行微生物碳代謝途徑之基礎研究探討,未來或許也可應用於商業化微生物之固碳速率提升。相關研究發表於<Metabolic Engineering>
2018/07/20
3D列印技術是快速成型技術的一種,透過電腦建模、分區設計截面,再經由3D列印機逐層製作。最常使用在3D列印的原料便是塑膠聚合物,然而大部分的塑膠聚合物雖具備良好的熱塑性與強韌性,卻不易受到生物降解,產品於未來可能成為環境汙染一部分。而纖維素(cellulose)是世界上最豐富的有機化合物和工業副產物,不但取得方便,也容易經由生物分解而回歸自然;但對3D列印技術而言,纖維素並非容易處理與使用的素材,不但生產成本高,延伸性也不如金屬和塑膠材質好,因此不易利用3D列印製作大型物體。   新加坡科技設計大學(Singapore University of Technology and Design,SUTD)從卵菌細胞壁中獲得靈感,利用水溶解幾丁質(chitin),再將其滲透進纖維素結構中,製作出類真菌黏合材料(fungal-like adhesive materials,FLAM)。不但具有良好的延展性、重量輕且成本低廉等特性,且製造期間不需使用有機溶劑或合成塑膠,產品也能在自然情況下進行生物降解,維護環境永續性。   FLAM的製作成本大約2美元/公斤,比起成本介於20-30美元/公斤的PLA和ABS更具效益,除了進行3D列印以外,也能利用一般的木工技術進行塑形與切割,剩餘的廢棄材料更可投入堆肥中回歸環境。因此研究人員認為FLAM是一種適合未來社會的材料,將促進製造業提升至更加友善環境的層級。【延伸閱讀】利用青芒果皮解決油污泥問題   相關研究發表於<Scientific Reports>
2018/07/19
苦味是動物長期以來演化的味覺感受之一,通常也是最敏銳的一種,苦味的來源並非由單一化學物質所引起,主要含有苦味的兩類化合物為長碳鏈有機化合物與生物鹼。苦味通常也與危險訊號連結,例如某些生物鹼的致死劑量極低,食用過量將對動物健康形成危害,故苦味在某種程度上也是保護動物免於傷害的防護線。然而,部分對人體有益的食物或食品也含有苦味,因此食品和製藥行業一直在尋找減少或消除苦味的方法,增加這些食物或藥物的適口性。   生物活性肽泛稱一類分子量小於6000Da(Dalton)的小分子蛋白質,因其組成的胺基酸種類與排序不同而形成多樣結構。其中由牛肉蛋白質分解成的生物活性肽可以阻絕舌頭上的苦味受體,具有可添加在於其他食物或是藥物當中的潛力。人體中能偵測苦味的受體至少有25種,這些受體屬於味覺家族蛋白中的第二型(T2R),然而到目前為止,只有少數T2R活性抑製劑被發現。【延伸閱讀】科技始終來自「牛」性 機器人擠牛乳產量增加15%   加拿大曼尼托巴大學(University of Manitoba)的研究人員則使用六種不同的酵素,包含鹼性蛋白酶(alcalase)、胰凝乳蛋白酶(chymotrypsin)、胰蛋白酶(trypsin)、胃蛋白酶(pepsin)、風味酶(flavourzyme)和耐熱蛋白酶(thermoase),分解牛肉蛋白產物,再利用電子舌偵測這些產物降低奎寧苦味的效果,發現用胰蛋白酶和胃蛋白酶分解後的產物降低奎寧苦味的效果最好。此外,於HEK293T細胞中添加鹼性蛋白酶與胰凝乳蛋白酶的水解產物也可以減少T2R4苦味受體釋放鈣訊號,且這些阻斷苦味訊號的效果與多肽的結構長短相關,此發現未來或許可應用於食品或藥物添加之用途。   相關研究發表於ACS的<Journal of Agricultural and Food Chemistry>
2018/07/18
燃料電池(Fuel cell)是一種透過氧化還原反應,將氧化燃料產生的化學能轉化成電能的裝置,可供給於工業或交通工具等用電需求。常見的燃料包含甲烷、氫氣、醇類等,透過劇烈的氧化反應後會產生水、二氧化碳與部分熱能,由於燃料電池對環境的汙染比起化石燃料更低,因此被視為是綠色能源的一種。   木質素(lignin)是構成樹木細胞壁重要的有機聚合物之一,具有極高的硬度,在纖維素(cellulose)的黏合下支撐整棵植物的重量。然而,木漿中的纖維素是造紙工業中不可或缺的主要材料,木質素的存在卻反而容易指紙張脆化,因此在造紙過程中木質素便被溶解於硫酸鹽或亞硫酸鹽溶液中排除。一棵樹約含有25%的木質素,若能經過適當方式再度利用,則更有利於環境永續。木質素由豐富的烴鏈所構成,經過分解可產生大量的苯二酚(benzenediol),其中兒茶酚占約7%,瑞典林雪坪大學(Linköping University)認為此類分子是一種可用於燃料電池的替代燃料,因而積極開發利用將其製成燃料電池的方式。【延伸閱讀】將廢水副產物轉化為永續綠色燃料   一般而言,燃料電池常使用鉑作為電極以吸引電子,但鉑為貴重金屬,不但單價高,且不適用於屬於芳香族的兒茶酚燃料電池中,因此該團隊使用導電聚合物PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate)製成適用於兒茶酚的電極與催化劑;根據估算,兒茶酚燃料電池的發電量與現有的甲醇或乙醇燃料電池大致相同。雖然兒茶酚燃料電池未來仍需經過改良才能有效使用在各項需電設施上,但此研究提供了木質素加值利用的新方向,幫助人們更完全利用林木資源。   相關研究由Digital Cellulose Center (DCC)支持,結果發表於<Advanced Sustainable Systems>。
2018/07/17
全球人口數量至今仍在持續增加,據聯合國統計,至西元2050年時全球人口預計將超過90億,屆時糧食需求將增加六成以上。然而目前儘管耕作方式不斷改進,但農作物產量增加速度並無法跟上糧食需求的增長。此外,氣候變遷、環境汙染、土地與水資源耗損等因素也持續威脅著糧食安全,因此發展改變食物生產的突破性技術刻不容緩。   未來預計80%的人將聚集於城市地區,如何在空間、資源與能源的限制下應付高密度人口的糧食所需是學者專家們正在努力研究的方向,「垂直農業」的出現提供未來糧食生產的新方向。垂直農業藉由精準的偵測與環控技術,創造適合作物生長的理想環境,屏除天然氣候的不確定因素與病蟲害侵擾之風險,日本、荷蘭、新加坡與美國等地均已出現相關的商業化工廠;預計至2024年,垂直農場市場將到達130億美元。【延伸閱讀】能偵測土壤水分多寡的作物灌溉感測器將能達到省水之效   除了營養、需水量、溫溼度控制外,二氧化碳濃度也是影響作物生長與光合作用速率重要的影響因素,適當的濃度可以幫助節省作物用水量與增進生長速度。英國Edinburgh Sensors公司推出了氣體感測器-GasBoxNG,此儀器使用NIDR (non-dispersive infrared) gas sensors進行偵測,當紅外光通過含有二氧化碳的空氣管時,部分光線會被吸收,而機器可以光線通過差異推算二氧化碳濃度。使用在垂直農場中可即時監測二氧化碳濃度,並搭配自動化控制系統持續維持適合作物生長的二氧化碳濃度。另外,此儀器也能應用於厭氧發酵時的通氣量監測與植物生理狀態觀察,並將資訊傳輸於電腦或智慧型平板中。
2018/07/16
柄海鞘(Styela clava)是一種棒狀大型海鞘,原生於太平洋海岸地區,由於其可抵禦溫度與鹽度的變動,且生長密度極高,因此容易在不同地區建立起新的族群,擠壓當地的原生物種生長所需的空間及食物,甚至捕食其他當地物種隻幼蟲。此外,柄海鞘具良好附著性,可能附著在船體或是水中儀器、捕魚設備上,使得業者需要耗費更多燃料、清潔與汰換成本,成為沿海養殖業者必須面對的問題。部分亞洲國家具有食用柄海鞘的習慣,能夠稍稍控制族群數量,但除了食用以外,若是可開發更加大量利用海鞘之用途,有助於提高此類入侵種所帶來的效益。   木漿是製造紙類與其他紙製品過程中所使用的原料之一,通常由商用木材加工後剩下的材料製成,然而木漿經過數次回收利用後纖維結構會愈加脆弱,故無法多次重複利用所造成的資源浪費也是一大難題。而美國國家標準與技術研究院(National Institute of Standards and Technology ,NIST)的研究人員現在將此兩種剩餘材料結合起來,形成一種新型複合材料,內部分子以螺旋形狀堆積,形成具有韌性的「Bouligand」結構;這種特殊結構在受力時能夠吸收與導出碰撞能量,同時保持材料的完整與功能性。【延伸閱讀】開發肯亞農民儲存農作收成的大型離網型冷藏庫   因為木材本身並無天然的Bouligand結構,經過多次酸清洗的木漿內含有纖維素奈米晶體,可經由加工製成具Bouligand結構之薄膜;但純木漿薄膜易碎且無法承受強大重量,這種同時結合動物與植物資源再利用之技術突破了木漿原有的性質,且增加了紫外線反射性。目前製造此種複合材療的成本仍然較高,需要審慎評估添加量與使用範圍;未來或許可應用於食品包裝、生物醫療設備、建築與機械結構上,增加受力與減緩光線損害物體之功能性。    此研究發表於<Advanced Functional Materials>
2018/07/13
人類具有紅光、藍光、綠光等三色視覺受體,能夠區分這三種色光交疊合成的各種顏色;而蜜蜂複眼也具有三色視覺,包含藍光、綠光和紫外光等三種感光器,因此人眼與蜂眼所見的花朵顏色並不相同。而紫外光由於能量較高,能夠激發花朵上的螢光體而產生不同顏色的螢光,這些光線進入蜜蜂眼中的感光器,能夠幫助蜜蜂找到富含花蜜的地方。   雖然蜜蜂擁有三色視覺,但前人研究已證明其中一或兩種感光器能夠主導蜜蜂對花朵的偏好,尤其是藍色螢光光譜區段。由於目前尚無關於野生蜂的顏色偏好研究,故美國俄勒岡州立大學(Oregon State University,OSU)設計了一系列蜜蜂誘引裝置與結合日光激發產生螢光的裝置,用以測試野生蜂是否會受到綠色或藍色螢光的吸引,以及何種波長間的光線對野生蜂的誘引性更強。研究顯示,在不同的景觀背景的顏色條件下,野生蜂較偏好藍色螢光的誘導結果;此外,野生蜂在波長約400-490nm中藍色螢光區段更偏好波長介於430-490nm的螢光。【延伸閱讀】寄生黃蜂為種植者提供了無化學害蟲防治方法   相關結果發表於< Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology >。有鑑於蜂群數量日漸稀少,可能影響野生植物與作物的授粉與收獲,此研究具有未來評估與吸引蜂群的應用潛力,幫助科學家或農民誘引蜂群授粉。

網站導覽
活動資訊
訂閱RSS
電子報訂閱