MENU
趨勢快訊
香蕉梗中的纖維素可減緩冰淇淋融化
2018/04/02
冰淇淋是一種冷凍甜品,以牛奶或奶油為原料,加入其他水果、香料、甜味劑和色素等成分混和製成。由於冰淇淋曝露於高溫下會迅速融化,因此從生產、包裝、運送至販賣均須維持在零度以下,且離開冰箱後儲藏時間極短。2017年日本開發了抗融冰淇淋,其中添加了從草莓萃取的多酚類化合物,能夠長時間維持冰淇淋中的油水成分不易分離,使其於室溫下經過長時間仍能維持一定形狀。   除了日本開發的草莓多酚,哥倫比亞的Universidad Pontificia Bolivariana大學也嘗試使用香蕉中的纖維素奈米纖維(cellulose nanofibrils,CNFs)減緩冰淇淋融化。CNFs來自植物纖維素中的層狀結構,除了來源天然以外,也具有良好的親水性與高強度,因此可應用於食品工業中作為部分材料的替代物。研究人員從香蕉果梗中取得比人類頭髮的寬度小幾千倍的CNFs,然後將其混入冰淇淋中,評估CNFs對冷凍狀態維持的影響,發現可增加低脂冰淇淋的粘度,顯示CNFs幫助穩定冰淇淋中的脂肪結構,或許能替代冰淇淋成分中的部分脂肪,降低產品熱量。【延伸閱讀】控制可可豆烘烤條件能夠增進食用益處   雖然目前尚未了解CNFs如何在不影響冰淇淋質地的情況下降低其融化速率,但此一發現可以幫助農民利用香蕉果梗等不宜食用之部位,增加農產品的利用性。相關研究發表於3月21日於洛杉磯舉辦的255屆美國化學學會會議,未來將計畫探討不同類型的脂肪(如椰子油和乳脂)如何影響CNFs在其他冷凍食品中的狀況。
超級細菌能幫助植物抵抗環境壓力
2018/03/31
全球農業目前面臨著人口爆炸和氣候變化帶來的巨大挑戰,全球暖化嚴重影響乾燥地區可耕作用地之數量,為了滿足糧食供需,提高糧食安全,因此尋找促進作物生長與生產的方法刻不容緩。國際生物農業中心(International Center for Biosaline Agriculture,ICBA)、阿拉伯阿布都拉國王科技大學(King Abdullah University of Science and Technology,KAUST)、荷蘭瓦赫寧恩大學(Wageningen University)與德國聯邦種植植物研究中心(Julius Kühn-Institut,JKI)提出了「Darwin21」計畫,旨在調查沙漠微生物及乾燥地區重建永續農業系統的應用。   作物需要更強的抗逆境能力,育種技術與基因工程雖可解決此一需求,但也耗費大量時間;若是可以現有之微生物直接或間接輔助植物生長,則更能節省時間和成本。存在植物根圈附近的微生物能夠影響土壤性質與植物健康,故DARWIN21計畫的其中一個項目為探索沙漠微生物多樣性,期望能在高溫、高鹽或缺水條件下仍然存活的先鋒植物找出提升其存活率的根圈微生物,並調查其在沙漠及其邊緣地區改善農業永續性的潛力,藉此重建當地農業。   由Heribert Hirt教授所帶領的團隊就針對了SA187細菌進行研究,此細菌從一種稱為「木藍(Indigofera argentea)」的沙漠植物根留中分離;經過全基因組定序,目前已發現其具多種促進植物於逆境中生長的基因。此外,受到SA187細菌處理的阿拉伯芥(Arabidopsis thaliana)幼苗於逆境中的生長較未處理組更佳,顯示細菌可調節其酵素分泌以幫助植物健康生長。而該團隊將SA187細菌的基因組進行分析,發現它可能屬於腸桿菌科(Enterobacteriaceae family)內的新屬,此結果尚待進一步調查,才能準確描述其分類地位。【延伸閱讀】研究可抵抗多重逆境環境之關鍵基因   該團隊還開發了此細菌的應用性,現在正創建一家非營利性公司,向世界各地的貧困農民推廣SA187,於播種前塗在植物種子上,希望能夠增加農民收成,以改善其農業生產與生活。
幫助液態檢體診斷新技術
2018/03/30
細胞間的訊息依其分泌的胞外囊泡(Extracellular vesicles, EVs )傳送,通過血液或體液傳達到身體其他區域,這些囊泡扮演著溝通與微環境調節的角色。因此囊泡運輸系統中與疾病相關的生物標記分子(biomarker),可作為協助癌症、心血管或血液疾病的臨床診斷之用。但囊泡顆粒為奈米大小,具高擴散性及流動性,因此分離過程較為困難且耗時,傳統上需要依靠超高速離心機執行。   來自新加坡國立大學(National University of Singapore)研發新型裝置,名為microfluidic CEntrifugal Nanoparticles Separation and Extraction (µCENSE),具有短時間分離與疾病相關的循環生物標記分子(Circulating biomarker)之相關潛力。此項技術較為簡單、快速且方便,能幫助臨床液態生物檢體(liquid biopsy)診斷。   研究團隊首先利用微流體離心技術(Microfluidic centrifugal technique),分離癌細胞培養液中的囊泡。將樣本置入具有特殊設計之彎曲分離微通道的μCENSE晶片,之後把μCENSE加裝至一般實驗室專用之離心機,以離心力分離界於100-1000奈米(nm)的囊泡。透過分析其中的核酸與蛋白質等biomarker成分及含量,便能協助特殊疾病的檢查及診斷。【延伸閱讀】以犬骨、羊骨做為家鴿骨折的新興固定材料   研究顯示,此裝置能成功分離出帶有標記分子CD63的囊泡,且分離速度比傳統的超高速離新技術快100倍。目前團隊正積極朝向優化μCENSE晶片設計以增加分離量。希望此項技術未來能協助臨床癌症、心血管或血液疾病等研究,或許在未來也能將其擴增應用於動物醫學領域,加速動物疾病診斷與生理途徑相關研究等,保障動物健康及福利。   相關研究發表於AIP Biomicrofluidics
雷射加工石墨烯應用於食物的新技術
2018/03/29
雷射的應用範圍非常廣泛,包含金屬切割、印刷、手術治療、武器使用等,而美國萊斯大學(Rice University)化學系則使用雷射將目標物印在日用品上,包括食物、布料、紙和木頭等,稱為雷射加工石墨烯(laser-induced graphene,LIG)。由於這類多孔性石墨烯奈米材料特殊的物理及化學性質,因而具有廣大的應用潛力。 早期研究指出,含有木質素的材料可在惰性氣體或還原性氣體中通過雷射轉換為LIG,而軟木、椰子殼和花生殼含有較多的木質素,因此較容易轉換成石墨烯。此研究團隊去年發表了由聚酰亞胺(polyimide)合成LIG的方法,可用於超級電容器、電催化劑、光電探測器、電化學生物傳感器等多種裝置,但此法會受到材料限制。因此本次使用阻燃劑預先處理物體表面,將其轉化為不定形碳,後續再利用紅外光的選擇性吸收將不定形碳轉化為LIG;透過雷射散焦可加速製程,並精密控制圖案。 與先前使用的聚酰亞胺作為襯底,再使用雷射生成石墨烯相比,使用新方法並不會增加作業時間,且作業時無需特別使用惰性氣體。此外,任何可轉化成不定形碳的材料或許都可利用此法直接轉化成石墨烯,以後或許有機會做為新一代「可食用之電子產品」。 作者認為可穿戴電子產品為石墨烯技術應用的早期市場,隨著雷射工藝的多功能化,我們逐漸可以更加簡便的方法與大氣環境中產生各式物體表面的導電圖案。未來或許食物表面都將會有一個微小的RFID標籤,可以告知消費者存放的時間、來源以及到達餐桌前的輸送過程;LIG標籤也可能作為檢測食物中的大腸桿菌或其他微生物的傳感器,潛力無窮。
生物炭可替代不可再生的泥炭苔
2018/03/28
在農業與盆栽園藝中,泥炭苔(Peat moss)常被作為無土栽培的重要介質;因其有層層薄壁細胞,能將水分與空氣容納於其中,具良好吸濕性,並可吸附養份,幫助植物固著與平衡生長環境而被廣為使用。   泥炭苔主要由高緯度寒冷地區之苔蘚類(Moss)植物經長時間腐化所沉積形成,且大部份發生的地點位於沼澤中。由於沼澤泥炭累積過程緩慢,每年深度不超過一毫米,故其被視為不可再生的自然資源。此外有專家指出,在泥炭苔的開採過程或是作為混合介質使用於盆栽種植時,容易造成二氧化碳釋放於大氣中,增強溫室效應,因此為了維護自然環境,現已有許多高緯度國家不再開採。   在最近的一項研究中,美國伊利諾大學厄巴納大學-香檳分校的作物科學系助理教授Andrew Margenot與選用選伐林(Selective logging)中的軟木(Softwood)製成生物炭,替代泥炭苔進行萬壽菊盆栽種植研究。生物炭類似於木炭,藉由有機質廢棄物如玉米桿、風傾草(Switchgrass)、稻桿等,於無氧環境下經過熱裂解(Pyrolysis)過程所製成,其性質會因原料和熱裂解溫度而異;且生物炭分解非常緩慢,因此有助於將碳封存於土壤中,減緩大氣中二氧化碳濃度。【延伸閱讀】研究人員將澱粉和纖維素結合在一起以開發出可水解塑膠   研究團隊指出生物炭其酸鹼值(pH)可高達10.9,對於植物生長較為困難,發芽初期容易造成缺氮、矮化或葉綠素減少等徵狀。但根據實驗結果,種植於溫室中的萬壽菊仍能完成生命週期至開花結果,且萬壽菊外觀性狀未受影響;最後測得盆栽混和介質之酸鹼值也被中和,其推論是由於植物根部與盆栽內混合介質進行自然過程的離子交換所造成。   雖然以生物炭作為泥炭苔的替代介質,有理論負面影響,但在萬壽菊實驗發現效果良好,因此仍有潛力應用於其他商業化盆栽植物之種植與研究,以間接幫助大氣中溫室氣體濃度減少,維護自然環境。   相關研究發表於 Industrial Crops & Products
英國於2018 NFU Conference發表未來農業願景
2018/03/27
英國政府環境、食物及鄉郊事務部(Department for Environment, Food & Rural Affairs)國務卿Michael Gove於2018年NFU (英國農民聯盟,National Farmers Union) Conference上發表了未來願景,表示未來的農業政策將目標鎖定於「公共財」。   Meurig Raymond在辭去NFU主席前的最後一次會議演講中,強調農業是英國鄉村經濟的核心,而英國作為世界農業領導者之一,農業生產須達到食品安全、合理價格與優質供應的目標。英國農產品若要打進歐盟市場,需要採取相關措施幫助相關產業提高生產力和品質。NFU提出了英國食品和農業成功脫歐後的農業發展三大基礎,包含環境、生產力和抵禦經濟波動的能力。   動物健康福利是現今重視的議題之一,英國是世界上眾所皆知重視動物福利的國家。英國未來的農業政策,將利用大部分的資金於改善農場福利與環境;另外也用於新技術投資,藉由提高農業生產力與環境效益的相關教育與培訓,也可促進民眾參與與支持這些公共財。   Michael Gove重申,英國不會在脫離歐盟後的新貿易協議下降低動物福利和環境標準,反而更應該致力於提升相關目標。立法只能規定動物福利的最低標準,目前仍有許多地區的農場未達合法標準,投資相關行業的新技術與試驗方法,可以幫助農民改善未達標準的動物福利。【延伸閱讀】加拿大2017-2022年創新超群計劃   為了使英國展現真正的農業潛力,必須改善貿易環境,擁有一個平等分擔風險的食品供應鏈,而非把所有風險都集中在農民身上。
人工智慧可以幫助養活世界嗎?
2018/03/26
針對現今人口快速增加,即將面臨的糧食不足問題,人工智慧(artificial intelligence, AI)技術是否可以應用於農業領域,協助解決此一難關?目前已有許多公司將AI運用於農業,提高農產品生產效率。   加拿大San Jose的Resson公司開發比人眼更精確的影像辨認系統,可偵察與分辨植物病蟲害疾病,Resson公司和McCain Foods公司合作,已將此技術運用於馬鈴薯生產線上,減少馬鈴薯生產之損失。   新成立的Orbital Insights、Descartes Labs、Gro Intelligence與Tellus Labs公司,利用人造衛星影像、氣象資訊、歷年生產資料,開發預測軟體。Tellus Labs公司表示利用此預測軟體可以比USDA報告提早一個月,得知生長季節中每日農產品之產量。   位於美國聖地牙哥市新成立的Slantrange公司,成功開發準確量測作物與雜草數量之影像偵測機,可使用於美國中西部與南非等植物種植較稀疏之沙質土壤地區,Slantrange公司近期與Bayer Crop Science公司合作,共同從事植物生產工作。   AI與農業機械結合最成功之案例是位在美國加州Sunnyvale的Blue River Technologies (BRT)公司,運用自動化辨視噴灑(See and Spray)系統,有效消滅棉田中的雜草。利用AI分析高解析度影像,辨認雜草種類與所在位置,精確噴灑除草劑,有效減少90%除草劑之使用量。【延伸閱讀】以次世代人工智慧技術加速孕育抗性作物品系   另外,AI也應用於植物生產領域上,孟山都(Monsanto)公司在玉米育種方面,利用過去累積15年之田野試驗資訊和分子標誌技術,預測並擬定在一年期田間試驗中,具有最佳表現型之育種策略,加速玉米育種時程,相較於傳統育種方式,孟山都公司藉此方式可擴大生產線規模達5倍以上。   AI在農業上之運用,目前已初見成效,未來仍需要農民與各界持續提供田間農作物資料,建立完整農業大數據資料庫。同時,期待AI此強大工具,在不久的將來,能夠在農作物品種改良、提高生產效率與產量方面,具有更多突破性之發展。
ω-3多元不飽和脂肪酸可幫助減緩乳癌細胞發展
2018/03/23
乳癌是女性好發的重要癌症之一,其中約有四分之一的癌細胞為HER2基因過度表現的類型。HER2基因(第二型人類表皮生長因子受體,英文Human Epidermal Growth Factor Receptor 2)位於人類的第17對染色體上,具有訊號傳遞及管控細胞分裂等功能;然而部分乳癌中的HER2基因則會過度表現,造成患者的癌細胞分裂速度較快、容易轉移、化療後易復發等情形。   東方人乳癌發生率較西方國家低,但移居西方國家後採當地飲食習慣的東方人發病機率與西方國家相似,故推測含ω-3脂肪酸較豐富的東方飲食能夠影響乳癌的發生;雖然目前尚未得知乳癌發生的主要原因,但若能了解飲食與癌症發生的關聯性,便能有效降低乳癌發生的風險。   ω-3脂肪酸屬於多元不飽和脂肪酸,這一類脂肪酸中最廣為人知的是α-亞麻酸(α-Linolenic acid, ALA),二十碳五烯酸(Eicosapentaenoic acid, EPA)和二十二碳六烯酸(Docosahexaenoic Acid, DHA)。其中ALA能夠於亞麻籽等可食用種子、大豆等植物來源中取得;EPA和DHA則多存在於海洋生物中,如魚類、藻類和浮游植物等。目前已知如EPA和DHA等來自海洋的ω-3脂肪酸能抑制乳癌發生,但針對ALA的研究較少,因此加拿大貴湖大學(University of Guelph)人類健康與營養科學系投入研究,希望藉小鼠實驗比較不同ω-3脂肪酸對HER2+乳癌的影響。   實驗小鼠在腫瘤尚為發展前就食用不同的ω-3脂肪酸,直到二十週齡時記錄最終的腫瘤重量和體積,並分析小鼠體內相關基因的表現量,以探討飲食中添加ω-3脂肪酸對腫瘤發育的作用。透過實驗顯示,餵食魚油比亞麻籽油效果更佳,且ω-3脂肪酸可能經由阻斷腫瘤生長發育與免疫調節而減緩HER2+型的乳腺癌發生。【延伸閱讀】利用植物根部生產人類蛋白質   根據實驗推估,人類每週應食用兩到三份魚才能有類似效果;除了富含EPA和DHA的食物外,額外的補充劑和功能性食品也能幫助預防癌症。相關研究發表於<The Journal of Nutritional Biochemistry>,作者下一步將調查ω-3脂肪酸對其他乳癌類型的影響,以便確認此種脂肪酸是否能廣泛延遲乳癌發展。
研究牛瘤胃之微生物能幫助提升肉類與乳製品產量
2018/03/22
瘤胃(rumen)是牛、羊等反芻動物四個胃室中的第一個胃,內部含有豐富且複雜的微生物生態,能夠幫助分解食物,因此維持瘤胃裡的微生物健康與正常醱酵對維持動物營養非常重要。然而瘤胃中的微生物相可能因成分、來源或環境等因素受到變動,故研究此微生物相的變化有助於了解反芻動物之生理情形。憑藉著分子生物學與基因體學的進步,針對微生物的相關研究也越來越多,因此於2018年發表在Nature Communications期刊的一項研究中,英國愛丁堡大學羅斯林研究所─Mick Watson 團隊與蘇格蘭農村學院─Rainer Roehe團隊共同合作,利用總體基因體學(Metagenomics)和Hi-C based proximity-guided assembly (Hi-C based PGA)進行43隻蘇格蘭牛(Scottish cattle)之瘤胃中微生物的DNA測序與組裝,接著交叉比對基因資料庫後,鑑定出913種微生物,且大部分的微生物屬於未曾發現的新物種。【延伸閱讀】科學家已開發出快速檢測病毒之可攜帶設備   研究團隊也表示,這些新發現的微生物能將植物轉化成動物所需的營養與能量,最後成為動物身上的肌肉蛋白(muscle protein)及分泌出的牛乳;未來不僅能協助研究提升肌肉或乳製品產量,增進糧食安全,也有極大的潛力應用於生物燃料(biofuel)與生物技術產業中。
區塊鏈如何加強鮪魚供應鏈的追蹤性以打擊非法捕魚
2018/03/21
區塊鏈技術是比特幣中的重要概念,能用來記錄所有的交易過程,其本質上為群體共享的數據庫,而群體中的人皆可察看與更新,但歷史紀錄則無法被更改。此技術使用於供應鏈中能提高其透明度,為促進全球漁業發展,區塊鏈技術將被用於改善鮪魚產業的可追溯性,以阻止太平洋周邊的非法捕魚活動。   世界自然基金會(World Wide Fund for Nature)、美國以太坊創始公司ConsenSys、斐濟技術初創企業TraSeable和鮪魚捕撈和加工公司Sea Quest合作,將於太平洋區域展開區塊鏈的試驗項目,預計利用區塊鏈技術追蹤鮪魚從捕撈到餐桌上的歷程,其目的是為了幫助禁止在鮪魚產業中非法捕魚和侵犯人權行為。【延伸閱讀】智慧手機與區塊鏈技術應用為打擊食品詐欺的新方法   相關追蹤在鮪魚被捕穫後立即開始,一旦捕到魚就在漁船放上可重複使用的RFID標籤(無線射頻識別,Radio Frequency Identification;RFID),漁船、碼頭和加工廠的相關裝置能將各段作業訊息上傳。一旦魚獲受到加工處理,RFID標籤就換成較便宜的QR Code附到產品包裝上。QR Code中包含相關的區塊鏈記錄及原始的RFID標籤資料,減少整體過程中的標籤成本,使得捕魚產業中的中小型經營者也可參與其中。消費者只要運用智慧型裝置掃描產品上的代碼就能得知產品供應鏈上的所有資訊,雖然此次為首次將區塊鏈技術運用在太平洋地區的捕撈漁業,但Provenence公司和國際桿線協會(International Pole and Line Foundation;IPNLF)已有魚獲從印尼送到英國的成功案例,且Provenance還致力於使用區塊鏈追蹤棉花、時裝、咖啡和有機農產品等其他品項。   目前區塊鏈技術已開始改變既有的產品業務,為消費者提供更多採購決定的基礎資訊;且搭配供應鏈的高度透明性,將能有效消除非法捕撈活動與強化現有業者的管理方式。
國際水稻研究所推出監控及預防水稻白葉枯病爆發的工具
2018/03/20
四年多以來,Oliva博士及其團隊致力於破譯Xanthomonas oryzae pv. oryzae的遺傳密碼,此細菌能夠引起水稻白葉枯病(Bacterial leaf blight)的發生。水稻白葉枯病是世界上影響水稻的重大疾病之一,嚴重時可造成部分易感性品種70%的產量損失。雖然世界各地的水稻種植區都可能發生由X. oryzae引起的白葉枯病,但致病菌株的遺傳特性也因地而異,往往只能在大量爆發後才可對症下藥;因此長期以來,農民與科學家對於此種水稻病害的防治效果不彰。   以往的病害鑑定需要耗費大量的人力與時間,從現場的病徵觀察、多區採集,再到實驗室分離病原與後續分析,才能準確的計算病原數量與危害程度,通常需要花費數月甚至一年才能確定某地區的流行菌株。若能快速了解整個國內的病原群,那麼國內的水稻育種計劃可以針對這些毒性株特性進行篩選,以減少農民的種植風險。   國際水稻研究所(International Rice Research Institute,IRRI)開發了一種名為PathoTracer的革命性工具,只要將少許的葉片樣本到認證實驗室進行基因檢測,檢測結果由IRRI進行分析,如此便能將原本耗時一年的工作減少成兩週,農民在種植季節結束之前就能知道作物是否得病與病原資訊,並且獲得抗性品種之相關建議。由於PathoTracer可以同時計算數千個樣本,故可用於大面積偵測,也可搭配菲律賓水稻資訊系統(Philippine Rice Information System,PRIM)或病蟲害風險識別與管理(Pest and Disease Risk Identification and Management,PRIME),以支持國家或區域作物的健康管理。【延伸閱讀】日本認定符合技術與安全規範基因編輯食品,將可採用既有之食品法規進行規範與販售   此外,IRRI有興趣將此基因檢測工具擴大到稻熱病與其他可能感染稻米的其他病原。目前PathoTracer已經在亞洲其他地區進行測試,國際水稻研究所預計於2018年初推行,預期PathoTracer將對全世界的水稻產生重大影響。
利用植物根部生產人類蛋白質
2018/03/19
Rhizobium rhizogenes是一種根瘤菌目下的細菌,若植物傷口受到此細菌感染就會導致分支多、根毛多、無向地性的毛狀根(hairy roots, HRs)產生。毛狀根與正常的植物根不同,從受感染的植物上切斷後置於液體培養基中能持續生長,具有生長速度快、分化程度高與遺傳性狀相對穩定等特點。由於以上特點,無法順利於細菌等原核生物中表現的外源基因,可嘗試使用細菌感染植物產生的毛狀根作為表現外源蛋白與大規模增殖之工具,且目前已有人類基因於毛狀根表達而產生外源蛋白的例子。   脂肪酶是人類腸道中分解脂肪的酵素,有些人由於天生的染色體缺陷而缺少胰脂肪酶,這種缺陷會導致囊狀纖維化(cystic fibrosis),造成呼吸道、胰臟、腸胃道、汗腺等外分泌腺器官功能異常,進而增加感染跟發炎的機會。一般會給此類患者補充從動物性來源的胰脂肪酶,但動物性產品具有傳播病毒或普里昂蛋白等風險;故以植物生產酵素以作為人類治療補充劑是未來需要發展的替代方法。【延伸閱讀】伴侶動物對居家醫療的貢獻潛力   本研究利用油菜(又稱蕓薹,學名為Brassica rapa)的毛狀根作為產生人類胰脂肪酶的工具,利用生長劑2,4-D(2,4-dichlorophenoxyacetic acid)刺激毛狀根,產生類似癒傷組織的構造。此外,相較於未處理組,在添加2,4-D的毛狀根培養基中偵測到兩倍以上的脂肪酶活性,表示這些組織可能有助於生產大量的外源性蛋白質;作者建議將以上使用毛狀根生產蛋白的方式系統命名為「rhizocalli」,相關內容發表於Plant Cell, Tissue and Organ Culture (PCTOC)。
歐洲動物保護組織呼籲提高養殖雞標準
2018/03/18
包含皇家防止虐待動物協會(Royal Society for the Prevention of Cruelty to Animals;RSPCA等大型的動物福利與保護相關組織要求為養殖雞提供更好的福利標準,以解決肉類密集且大規模生產時面臨非人道條件的問題。RSPCA的農場動物福利專家Sophie Elwes表示:儘管雞肉需求量迅速增長,但大部分養殖動物的福利卻沒有改善,快速而集約化的養殖條件可能導致動物健康受到損害,如心血管疾病或部分殘疾等。   雞的肉類產量比其他任何養殖動物更高,英國每年就宰殺9.5億隻,全世界每年約屠宰500億隻。而目前預估這些數字將迅速增加,到2020年成為世界上最大的肉類來源。以速食店為例,連鎖餐廳麥當勞(McDonald's)本來以販售牛肉相關產品為主,但現在銷售的雞肉比牛肉多,且預計到2020年的採購量將是現今的10倍以上。   名廚Oliver和Fearnley-Whittingstal強調基本的房舍、空間和環境等因素與養殖雞福利有重要關聯;但RSPCA認為,為加快販售時間而採用快速成長的性狀選拔可能對養殖雞的福利影響更大,因為消費者已養成了快速取得廉價雞肉的習慣,改變了傳統養雞產業的面貌。另外RSPCA最近的民意調查顯示,購買雞肉的10人中約有8人(86%)希望市場能夠確保銷售的所有雞肉皆符合高福利標準。新的福利標準規定養殖區域需要禁止屠宰期間非人道作業、有機繁養殖與良好的活動空間等條件,而目前英國只有被標記為RSPCA Assured的產品符合所有生產的新標準。【延伸閱讀】世界動物衛生組織最新的研究報告顯示全球已逐漸落實動物抗菌劑的用藥安全及監控管制   Marks & Spencer是英國最具代表性的連鎖商店之一,其中農業主管Steve McLean表示,動物福利是公司業務的核心之一,且企業具有社會責任去推動新的標準。因此將於1月份開始一系列的試驗,以測試動物福利新標準於商業化農業供應鏈中的工作模式。可持續餐飲協會(Sustainable Restaurant Association)執行長Andrew Stephen表示未來將努力加快更高標準飼養禽肉的採購和服務。
具治療糖尿病潛力的水飛薊素奈米製劑
2018/03/16
根據國際糖尿病聯盟(International Diabetes Federation)的統計數據,埃及是全球成人糖尿病人數排名前十的國家之一,國家每年花費超過14億美元於糖尿病及其併發症(包含高血壓、高膽固醇、心血管及腎臟疾病)之病程控制,而患者本身也需要負擔龐大的醫療費用。   水飛薊(又稱奶薊,學名為Silybum marianum)屬於傳統草藥的一種,中醫認為其具清熱利濕及疏肝利膽等功效,中世紀歐洲也用其治療肝脾阻塞及黃疸等症狀。而水飛薊內部所含的水飛薊素(silymarin)是一種多酚類化合物,被認為具抗發炎、抗氧化與抗癌等特性,或許能用於減緩肝病、癌症或糖尿病等疾病。但是水飛薊素在水中溶解度較低,於腸道內吸收較差,食用後大部分直接排出,無法有效被人體利用。   埃及曼蘇拉大學(Mansoura University)藥學院與開羅Zewail科學技術城合作,使用pluronic微胞(pluronic nanomicelles)作為水飛薊素的載體,能有效提高水飛薊素的水溶性,進而增加其生物利用度。經實驗證實,此技術能顯著改善第二型糖尿病之小鼠抗高血糖、血脂與抗氧化的能力。【延伸閱讀】ω-3多元不飽和脂肪酸可幫助減緩乳癌發展   此種奈米包覆技術開展了藥物研究的嶄新里程,然而,確定其臨床研究的有效性與安全性亦十分重要;故研究團隊後續仍會持續追蹤水飛薊素於動物體內的影響,以便了解水飛薊素於胰島細胞的作用機制,並與其他既有藥物進行比較,希望未來能夠提供新的藥物療法供患者選擇。   相關文章發表於Future Medicine出版的Nanomedicine
Smart Ag發布第一款無人駕駛機械平台
2018/03/14
美國多數農場採行大面積、粗放式農業,過大的場域容易造成管理不便,因此多用大型機械進行播種、施肥、除草、收穫等農業行為;而早期的大型機械需要駕駛在機器上控制,駕駛技術與安全性備受考驗。   比起自行培養專業技術人員,加強自動化可能是更快的選擇。因此美國愛荷華州技術公司Smart Ag開發了革命性的AutoCart軟體,為農業自動化打開了新的大門。AutoCart配合SmartHP可作為一組即插即用的系統,可以使現有的農場機械自動化,並兼容任何品牌或組合。 聯合作業人員需在現場設置各段卸載位置、調整穀物車與收割機的速度和方向,透過應用程式載入後就能精確同步化兩種機器的作業,使得農民可以一人完成傳統需要兩名熟練作業員的工作。【延伸閱讀】日本自動駕駛耕耘機之開發   此種使用現有機器且配合無人駕駛的技術突破,能夠解決收穫其勞動力短缺之問題;此外,農民從「操作者」轉化成為「監控者」角色,並且更加提高工作效率與能力。最近Smart Ag在玉米和大豆收穫期間於中西部農場完成AutoCart綜合測試,此技術可能透過提高生產力、安全性與利潤,為大型農場的作物生產帶來重大改變。   該公司認為,農業不應該再由設備決定生產利潤高低,而應該提供多種技術與工具供農民選擇,搭配正確的知識與技術,才能有效提高營運能力。
新型纖維素可望降低生質能源成本並治療感染
2018/03/12
纖維素(cellulose)為植物、藻類及細菌產生的一類胞外多醣,是構成細胞壁(cell wall)與生物膜(biofilm)的重要成分,也是地球上最豐富的生物性聚合物。纖維素使用範圍廣泛,從紙張到建築材料均可見其蹤跡;除此之外,還能作為生產生質酒精的起始材料。   生質酒精可以從玉米等含糖量高的農用原料製造,但會壓縮到玉米的糧食用途,且以往將分解纖維素成葡萄糖會消耗較多成本。美國史丹佛大學(Stanford University)化學系和德國柏林漢堡大學(Humboldt-Universität zu Berlin)的微生物學研究所合作,發現了大腸桿菌製造的新型纖維素-PEtN cellulose (phosphoethanolamine cellulose),此研究將可幫助減少纖維素轉化的時間與擴展其用途。【延伸閱讀】魚鱗膠原蛋白有助血管傷口癒合   細菌所分泌的生物膜具有良好的彈性與張力,可增強細菌抵抗逆境的能力。大腸桿菌(Escherichia coli)分泌的生物膜中具有特殊修飾過的pEtN cellulose,屬於兩性離子聚合物,經固態核磁共振(Solid-state nuclear magnetic resonance)鑑定後發現,phosphoethanolamine group的修飾與BcsE-BcsF-BcsG等跨膜訊號分子的傳遞相關。此外,這種特殊纖維素不易形成晶體且較易溶於水,作者認為利用此種纖維素作為生質酒精的生產原料將會使得轉化過程更加順利。另外,此發現可能還能幫助醫療應用,由於生物膜與細菌的抗藥性具有密切關連,若能將研究發現的纖維素修飾基因作為標靶,或許能為人類提供新的感染治療方法。   相關研究發表於Science
歐盟推動大數據技術整合幫助提升生物經濟價值
2018/03/09
由歐盟Horizon 2020 programme研究與創新計畫出資的其中一個子項目,稱為Data-Driven Bioeconomy(DataBio),為芬蘭VTT技術研究中心(VTT Technical Research Centre of Finland)所負責。DataBio的主要目標是研究、分析與展示從環境收集的大量數據資料,並將其應用於現有的農業、林業與養殖業中以減少資源浪費,並保護環境的永續性。   DataBio的參與者來自17個國家,包含比利時、捷克、德國、西班牙、挪威、波蘭、意大利、希臘、以色列、荷蘭、丹麥、瑞士、英國,愛沙尼亞、法國和羅馬尼亞。從2017年開始進行為期三年的計畫,預計在26個試驗點開發測試更優良的收集、分析與使用程式,而相關的大數據技術成果能再創新的商機。   在以精準農業為目標的試驗點中,根據當地氣象站、衛星和放在各處的感測器進行田間測量以收集數據,數據分析後可提供做為作物生長管理的依據,以便遠端控制農業機械進行播種、施肥和其他操作;而漁業的部分則聚焦在熱帶鮪魚與北大西洋的小型遠洋漁業,希望幫助節省成本及提高漁船效能。除了有前端的技術開發,後方用戶端、生物經濟和技術研究機構以及其他專家也將持續合作,整合出最適合市場使用的大數據計算與觀測方法的相關技術、工具與服務,將DataBio化為世界上最先進的大數據平臺。【延伸閱讀】EuroTier展示會的動物養殖數據技術應用案例   此計畫總預算為1,620萬歐元,預期成就包括:提升生物經濟的生產力、擴張大數據技術提供商在生物經濟相關領域的市場、提高大數據技術在生物經濟中的使用、密切與BDVA(Big Data Value Association)合作、連結此計畫與其他大數據相關的活動等。
蕁麻可催化新的抗癌藥物,提高化療效果
2018/03/08
自二十世紀以來,腫瘤與癌症已成為人類健康的主要殺手之一,而且自民國71年起癌症與惡性腫瘤持續成為國人十大死因之榜首,在國際上僅次於心血管與代謝疾病。癌症的治療手段之一為化學療法(Chemotherapy),利用特殊藥物進行全身性治療;由於藥物本身帶有毒性,故在毒殺或抑制癌細胞生長時也會影響到病人身上的正常細胞,造成服用後嘔吐、脫髮、身體不適等副作用。   金屬元素廣泛存在於環境,醫學上常有使用金屬協助醫療的情況,例如氫氧化鋁作為胃部制酸劑、鐵用於貧血治療、鎘用於顯影劑等。近年來,金屬錯合物與金屬酵素也逐漸作為醫療用途。英國的華威大學(University of Warwick)開發了使用鋨(Osmium,Os)的催化性抗癌金屬藥物,幫助人體體抗癌細胞。   鋨屬於非常穩定的過度金屬,此研究使用的鋨複合物[Os(arene)(TsDPEN)]藥物命名為JPC11,搭配適當劑量的甲酸鈉催化後,測試其對卵巢癌與前列腺癌的效果。JPC11針對細胞的代謝途徑進行攻擊,加快丙酮酸轉換成乳酸的速度,導致細胞的破壞;且JPC11對癌細胞有更好選擇性,能減少藥物對正常細胞的影響。【延伸閱讀】來自剛果植物中的化合物對抗胰腺癌細胞的應用潛力   鉑類化合物是目前應用最廣泛的癌症化療藥物,但卵巢癌此藥物抗性已逐漸提高,而JPC11可以在體內循環利用,重複攻擊癌細胞。此外甲酸鈉可在許多天然來源中取得,例如蕁麻和螞蟻,若是結合兩者運用,將能引導未來的抗癌藥物往更小、更有效和更低劑量的方向施用,進而減少化療的副作用。   相關研究發表於Nature Chemistry

網站導覽
活動資訊
訂閱RSS
電子報訂閱