MENU
趨勢快訊
巴西開發使細胞壁更容易分解的草
2018/02/23
石油與煤對人類發展具有重要影響,尤其於19世紀工業革命後成為全世界使用的主要能源,但隨著這些儲藏於地底的物質大量開採及需求增加,未來將會供不應求,影響未來人類生活。目前各國正在積極開發新的替代能源與綠色能源之利用,期望在石油與煤完全耗盡以前能夠維持現有產業及生活所需之能源;而植物細胞壁含有大量的碳,適合作為生質能源發展材料,被視為高應用潛力的替代能源原料之一。   生質(或稱生物質,biomass)是指能夠做為燃料或工業原料使用的有機物,包含生物所產生之廢棄物、和動物皮毛、植物纖維原料等,不包括石油與煤礦。其中植物生質熱值相當高,其中大部分來自於細胞壁,但植物的細胞壁中的木質素性質非常穩定,除了不易被草食動物消化以外,也難以加工用於生質酒精的製造;若是能解決原料分解的問題,將有助於動物利用或轉換為生質能源。   阿魏酸(Ferulic Acid)和對位香豆酸(p-Coumaric acid)為草本植物和單子葉植物合成木質素的主要前驅物,部分研究人員認為降低植物中合成的阿魏酸含量有助於增加生質的分解效率。巴西農業研究機構(Brazilian Agricultural Research Corporation)、能源與材料研究中心(Brazilian Center for Research in Energy and Materials)與英國洛桑研究所(Rothamsted Research)和美國威斯康辛大學(University of Wisconsin)合作,利用RNA干擾(RNAi)狗尾草(Setaria viridis)與二穗短柄草(Brachypodium distachyon)的BAHD01基因表現,通過這種方式所生產的生質糖化效率可提高40-60%。【延伸閱讀】人工合成氨的新方法可降低能源消耗   就技術價值而論,光是巴西的生質燃料市場預估就有4億美元,牛養殖業也有1,900萬美元。且全球皆使用草料作為動物飼料與生質原料,故此發現可作為基因標誌選種,讓畜牧動物從飼料作物中獲取更高的能量,或選取更合適的能源作物種植,提高生質酒精的生產效率。相關研究發表於New Phytologist。
含有能量飲成分的杯子
2018/02/21
美國加州的SMART CUPS公司推出了一系列可經由生物分解的杯子,杯子內部含有3D列印製成的微膠囊(稱為Katalyxt),並將能量飲料成分包裹在其中,消費者只要加入水或其他液體進入杯子裡,就能夠溶出包裝中的能量飲成分,將水變成一杯真正的能量飲。   微膠囊已使用多年,包含口香糖香料、晶球優酪乳的晶球等皆為微膠囊技術的相關產品。微膠囊指利用特定材料(通常為天然或化學合成之高分子材料)包裹特定物質形成的微小顆粒,外層具有溶解性佳、穩定、不易與周圍環境反應等特性,內層則為藥物、精油、香料、食品等,以利於儲存、運輸和使用並降低揮發性或保護特殊成分。3D列印則於上個世紀80年代發起,在早期則多為製作形狀特殊或大型工藝之用,近年來因材料與技術創新,逐漸加快列印速度與應用領域,但目前尚未於食品界商業化運作。   此商品技術凸顯3D列印走入奈米化的成熟性,也展現了新型的飲料包裝技術,能夠一一疊放並以更環保的方式運輸及儲存,節省空間與燃料成本;此外,當消費者飲用過後,杯子本體也留作其他用途或包裝。另一方面,此產品帶有的極簡風格可鎖定逐漸壯大的綠色消費客群,促使消費著養成重複使用同樣的容器以達到環保訴求。【延伸閱讀】延長食品保存的特殊糖衣   公司計劃未來將使用微膠囊技術開發運動飲料、咖啡、茶、果汁、蛋白飲品等品項,並同時開發一次性淨水杯,將受到污染的水過濾為安全的飲用水。相關產品的新穎性成功引起了消費者興趣,然而產品不附杯蓋,甚至需要自備額外的乾淨飲用水才能使用,使得大眾懷疑使用的便利性與客群,將為未來產品推廣之課題。
自癒性真菌混凝土幫助修復老化混擬土裂縫
2018/02/16
混凝土建築經過歲月的洗禮與風化會逐漸老化,老化混凝土中可能存有裂縫,導致結構受損,需盡快進行修補以防持續惡化。然而修補工作容易發生失敗,也可能擴大混凝土的損傷範圍,使鄰近的良好混凝土也開始發生破壞,嚴重者會導致鋼筋暴露與腐蝕。   美國的羅格斯大學(Rutgers University)與賓漢頓大學(Binghamton University)的研究人員共同開發出一種新型混凝土—自癒性真菌混凝土可以幫助修復老化混凝土中的裂縫,希望可以解決建築混凝土需要不斷修復的問題。   此方法使用真菌為木黴菌(Trichoderma reesei) ATCC13631,將孢子與混凝土混合,此時孢子處於休眠狀態,直到裂縫出現。當裂縫產生時,水和氧氣進入,溶解混凝土中的氫氧化鈣,使得pH值從6.5急遽增加到13,但T. reesei ATCC13631孢子仍能萌芽並生長良好,菌絲可累積碳酸鈣結晶以填充縫隙。一但裂縫被完全填滿,不再有水或氧氣進入時,則會再次形成孢子。【延伸閱讀】德國新創公司開發苔蘚外牆技術以改善城市環境   目前研究還處於初期階段,最大的問題是克服菌株在混凝土中的生存問題,需要更進一步調整,才能真正用於實際狀況,進行永久性修復。賓漢頓大學機械工程系助理教授Congrui Jin表示,最初發想是受到人體自我修復傷口和骨折的能力啟發;雖然將高效自癒產品帶到現有的建築市場是非常大的挑戰,但研究微生物應用的相關產品仍在市場上具有高度潛力。   相關研究發表於Construction and Building Materials
便攜式設備幫助偵測假酒
2018/02/15
過去在印尼、墨西哥、中國、波蘭和俄羅斯等地皆有因酒精汙染造成消費者身體不適甚至死亡的報導。此問題源自於商人希望賺取更多利潤,將自製假酒、水、抗凍液等作為稀釋液體,取代一部分的真酒。販賣假酒或稀釋過的酒或許能為經銷商賺取更多利益,除了標示與內容不符,具欺騙消費者的嫌疑。此外,摻假酒品內可能具有影響健康的汙染物,對人體影響更大。因假酒或混和過的酒在外觀上與真品無異,造成消費者辨識困難,也無法即時檢出與避免假酒。   美國伊利諾大學(University of Illinois)設計了一種具有先進感測器陣列的手持式設備,可以辨識酒的改變,協助管控酒的品質。研究人員開發了一種帶有36種染料的一次性感測器,這些染料接觸到酒蒸汽中的特定成分後會發生不同顏色變化,透過多種染料的交叉反應,結合約手掌大小的成像分析儀判定比色後可幫助在兩分鐘內簡單判讀酒的真偽。此裝置能夠正確辨識14種不同酒類的酒精含量和品牌,包括蘇格蘭威士忌、波本威士忌、黑麥威士忌、白蘭地和伏特加等,準確度大於99%;且甚至能夠辨識加水量少於1%的稀釋酒,具有於後端快速檢查與控管品質的利用潛力。【延伸閱讀】用以改善水壩營運的小型傳感器-Sensor Fish   相關研究發表於美國化學學會(American Chemical Society)推出的ACS Sensors
薑黃素能改善記憶和情緒
2018/02/14
薑黃(Curcuma longa)磨成的深黃色粉末為咖哩的主要香料之一,由於先前研究指出薑黃素具有抗發炎與抗氧化的效果,加上以薑黃作為主要飲食的印度高齡老人認知能力較好,罹患阿茲海默症的比率較低;故科學家推測薑黃素可以保護大腦免於神經退化性疾病的影響。   為了研究了薑黃素預防阿茲海默症之效果,因此美國洛杉磯加利福尼亞大學(University of California, Los Angeles;UCLA)採用了長達18個月的雙盲實驗,探索了其對腦類澱粉蛋白(amyloid)和Tau蛋白質累積的影響。實驗採40名年齡介於51-84歲的受試者區分成兩組,分別配給90毫克薑黃素或安慰劑18個月。所有受試者在實驗開始前與進行中每六個月接受一次認知評估,並檢測血液中的薑黃素含量。此外,有30名受試者進行正子斷層掃描(Positron Emission Tomography /Computed Tomography;PET/CT)以確定實驗前後腦中的類澱粉蛋白(amyloid)和Tau蛋白質累積的狀況。【延伸閱讀】具治療糖尿病潛力的水飛薊素奈米製劑   結果表示,服用薑黃素的人的記憶力和注意力皆較佳,情緒也有輕微改善,而腦部掃描顯示杏仁核和下視丘的類澱粉蛋白和Tau蛋白也明顯少於服用安慰劑者。雖然目前尚未了解薑黃素的作用機制,但推測可能是由腦部發炎症狀以達到緩和憂鬱症與阿茲海默症的疾病進程。研究人員計劃將進行後續研究以探討薑黃素是否也具有抗憂鬱之作用,並分析薑黃素效果是否因阿茲海默症的遺傳風險、病患年齡或認知問題而有分別。   此研究發表於The American Journal of Geriatric Psychiatry
新型催化劑將有毒的硝酸鹽污染轉化為空氣和水
2018/02/09
過量施肥導致農業排水中含有大量硝酸鹽,而美國玉米帶等農地集中區的硝酸鹽汙染則更加嚴重。為了減緩硝酸鹽汙染,硝酸鹽與亞硝酸鹽類的施用目前由環境保護局(Environmental Protection Agency)進行管理,由於高濃度硝酸鹽對人體具有毒性,因此農業排水需經過離子交換樹脂過濾除去硝酸鹽再行排放,但這些過濾器每隔數月就要沖洗以回復功能,而沖洗過的水也只是將濃縮的硝酸鹽再排放回環境當中,屬於治標不治本的方法。   美國普渡大學(Purdue University)化學工程系與萊斯大學(Rice University)土木工程學系合作,研發了加速分解硝酸鹽或亞硝酸鹽的新材料,可幫助這些汙染物轉化成空氣和水。材料發想來自Michael Wong團隊於2013年的研究,鈀金屬(Pd)的奈米顆粒能幫助分解亞硝酸鹽或硝酸鹽等化學物質,但催化效果不佳;而後來合作實驗室的Kim Heck提出使用銦(In)和鈀兩種金屬的構想,發現用銦覆蓋約40%的鈀球表面能創造活性更高的催化劑。將此催化劑放在含有硝酸鹽的溶液中導致銦氧化並加速了硝酸鹽的分解;鈀除了幫助銦氧化之外,在額外添加氫的環境下還能促進氧氣與氫合併形成水,使得銦得以還原而再度分解硝酸鹽。【延伸閱讀】利用光生物反應器處理廢水可降低抗藥性於環境中傳播的風險   經由催化分解的硝酸鹽最後變回了氮氣和水,得以回到大氣當中。未來還會與其他研究人員合作,將此技術變成商業上可用的水處理系統流程。相關研究發表於ACS Catalysis。
懷抱珍視大地,特克斯科技以技術翻轉讓堆肥變綠金
2018/02/08
有道是「肥水不落外人田」,一直以來,禽畜牧所排泄的糞便,對人類生活及環境衛生造成相當大的衝擊;隨著生物科技的發展,禽畜糞便最佳的處理模式,是經資源化堆肥處理後,再回饋到農作物使用。如今,堆肥更成接軌國際的綠金,從循環經濟中找到新出路!  禽畜糞便及蔬果堆肥通常是農民普遍採用的有機肥料,但未完全發酵的糞便不僅氣味令人作嘔,蒼蠅更是成群飛舞,對環境及生活品質帶來莫大的影響;因此,堆肥場的設置與堆肥的製作對於禽畜牧業者來說,其重要性並不亞於完善的溫室設施或灌溉系統,然而受囿於臺灣地狹人稠、養殖場經營規模及潮濕天候等因素,並非每個業者都有能力擁有完善的堆肥系統。  傳統上,要把有機廢棄物變成有機肥,需要歷經2、3個月的堆肥,讓微生物自然分解,以達到完全腐熟,堆肥不僅耗時、佔空間,還會散發臭味、排出臭水。更甚者,一旦處置不當,其所孳生的病菌也容易傳播感染,或造成水源及土壤的汙染問題,也因此,糞汙處理一向被各國政府當作重點環保問題。  廢棄物在地處理,循環經濟一舉數得  挾著母公司阜利生化科技股份有限公司在有機廢棄物處理之技術及設備之優勢,於2014年成立之特克斯科技發展出「HMD高效處理系統」(High temperature Microbiological Decomposition System),不需加熱乾燥,單套設備日處理量約在10噸,而且即使是含水量高達85%的禽畜便都可不需添加副資材,節省能源及處理成本,發酵後的腐熟肥料還可以施作還於田間,真正落實「愛地球、做環保、零廢棄、再利用」。  特克斯科技董事長洪歆怡補充,「相較於肉雞飼養,蛋雞每日都會產生糞便,大量的糞汙需要更有效率的處理,這套系統由於採用密閉負壓處理,不僅能快速在5~7天內將禽畜糞便發酵轉換成有機質肥料,達到減量、除臭之效果,也因分散式的設置方式,不佔空間,無需另建置廠房,就地就能處理,加上使用微電腦操控簡單介面,完全解決廢棄物不落地及降低運送費用的問題。」  而特克斯科技發酵技術部洪書群經理則表示,「將不同來源和成分的有機質廢物的發酵產物,進行成分分析、肥料調配處理後,再販售給農戶。透過這樣回收再生產出的有機質肥料,不但百分百循環利用,可依不同作物、土壤屬性做調配,更加有利農作生產,達到合理化施肥,市售價格也比一般有機質肥料便宜,可說是一舉數得。」換句話說,可藉由有機質肥料帶來利潤,不管是農民自行販售,或是將過剩的肥料透過特克斯公司統一收購,連帶為農民增加收益。  珍視土地,敲開國內外商機   過去由於化學肥料及農藥的發展,帶來了農作物產量空前的抬升,許多農民因此視化肥及農藥為萬靈丹,然而以臺灣本身具備的地形、氣候條件,土壤不易保持,有機質也容易分解,過度施用化學肥料,已經導致土壤酸化、地力退化及病蟲害問題。「因此,對我們而言,不管是研發微生物肥料,抑或是有機廢棄物的快速處理技術,這股珍惜、愛惜土壤的精神,才是最重要的使命,希望藉由有機質肥料的推廣,在落實循環經濟之餘,也能彌補前人以至這代人對土地的傷害,努力替後代留下一片依然生機盎然的大地。」洪歆怡說。  而這股珍視土地的精神,也為特克斯科技敲開了國際的大門。  行政院農業委員會透過「推動農業科技產業全球運籌計畫」,藉由財團法人農業科技研究院協助特克斯科技評估馬來西亞、印尼等國市場的開拓機會,發現這些東南亞國家,因為宗教之故,雞為重要的經濟產業,衍生而出的糞便問題,也蘊藏龐大商機。  「以馬來西亞為例,養雞場多採用露天堆置堆肥,除了環境問題之外,尚有含水率過高致使堆肥溫度無法上升,不能以高溫消滅草種及病原菌,且積體過大翻堆不易等問題。」洪書群繼續補充,「而過度使用化肥,地力退化以及病蟲害導致作物欠收之問題,在馬來西亞也十分嚴重,種種因素皆加速他們想採用更有效有的糞汙處理系統意願。」 目前,特克斯「HMD高效處理系統」已獲馬來西亞養雞業者Lay Hong Bhd、Dindings及雪蘭莪州農業開發公司採用,未來仍將持續鎖定可複製應用的國家如孟加拉、越南外,在國內也將持續推廣。  創新農業科技鏈結國際舞臺  「以現有資源回收和事業廢棄物再利用的基礎,臺灣大有可能成為亞洲循環經濟的『熱點』,這不僅有助臺灣產業的國際合作,還能開拓臺灣與世界在循環經濟上的對話空間。」,洪歆怡與洪書群共同期許。  過去,臺灣在海外農耕隊的努力下,以行動拉近了與世界的距離,未來,臺灣則能以新一代的農業科技,鏈結國際。  相關資訊  想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw。
懷抱珍視大地,特克斯科技以技術翻轉讓堆肥變綠金
2018/02/08
有道是「肥水不落外人田」,一直以來,禽畜牧所排泄的糞便,對人類生活及環境衛生造成相當大的衝擊;隨著生物科技的發展,禽畜糞便最佳的處理模式,是經資源化堆肥處理後,再回饋到農作物使用。如今,堆肥更成接軌國際的綠金,從循環經濟中找到新出路!   禽畜糞便及蔬果堆肥通常是農民普遍採用的有機肥料,但未完全發酵的糞便不僅氣味令人作嘔,蒼蠅更是成群飛舞,對環境及生活品質帶來莫大的影響;因此,堆肥場的設置與堆肥的製作對於禽畜牧業者來說,其重要性並不亞於完善的溫室設施或灌溉系統,然而受囿於臺灣地狹人稠、養殖場經營規模及潮濕天候等因素,並非每個業者都有能力擁有完善的堆肥系統。   傳統上,要把有機廢棄物變成有機肥,需要歷經2、3個月的堆肥,讓微生物自然分解,以達到完全腐熟,堆肥不僅耗時、佔空間,還會散發臭味、排出臭水。更甚者,一旦處置不當,其所孳生的病菌也容易傳播感染,或造成水源及土壤的汙染問題,也因此,糞汙處理一向被各國政府當作重點環保問題。 廢棄物在地處理,循環經濟一舉數得   挾著母公司阜利生化科技股份有限公司在有機廢棄物處理之技術及設備之優勢,於2014年成立之特克斯科技發展出「HMD高效處理系統」(High temperature Microbiological Decomposition System),不需加熱乾燥,單套設備日處理量約在10噸,而且即使是含水量高達85%的禽畜便都可不需添加副資材,節省能源及處理成本,發酵後的腐熟肥料還可以施作還於田間,真正落實「愛地球、做環保、零廢棄、再利用」。   特克斯科技董事長洪歆怡補充,「相較於肉雞飼養,蛋雞每日都會產生糞便,大量的糞汙需要更有效率的處理,這套系統由於採用密閉負壓處理,不僅能快速在5~7天內將禽畜糞便發酵轉換成有機質肥料,達到減量、除臭之效果,也因分散式的設置方式,不佔空間,無需另建置廠房,就地就能處理,加上使用微電腦操控簡單介面,完全解決廢棄物不落地及降低運送費用的問題。」   而特克斯科技發酵技術部洪書群經理則表示,「將不同來源和成分的有機質廢物的發酵產物,進行成分分析、肥料調配處理後,再販售給農戶。透過這樣回收再生產出的有機質肥料,不但百分百循環利用,可依不同作物、土壤屬性做調配,更加有利農作生產,達到合理化施肥,市售價格也比一般有機質肥料便宜,可說是一舉數得。」換句話說,可藉由有機質肥料帶來利潤,不管是農民自行販售,或是將過剩的肥料透過特克斯公司統一收購,連帶為農民增加收益。 珍視土地,敲開國內外商機    過去由於化學肥料及農藥的發展,帶來了農作物產量空前的抬升,許多農民因此視化肥及農藥為萬靈丹,然而以臺灣本身具備的地形、氣候條件,土壤不易保持,有機質也容易分解,過度施用化學肥料,已經導致土壤酸化、地力退化及病蟲害問題。「因此,對我們而言,不管是研發微生物肥料,抑或是有機廢棄物的快速處理技術,這股珍惜、愛惜土壤的精神,才是最重要的使命,希望藉由有機質肥料的推廣,在落實循環經濟之餘,也能彌補前人以至這代人對土地的傷害,努力替後代留下一片依然生機盎然的大地。」洪歆怡說。   而這股珍視土地的精神,也為特克斯科技敲開了國際的大門。   行政院農業委員會透過「推動農業科技產業全球運籌計畫」,藉由財團法人農業科技研究院協助特克斯科技評估馬來西亞、印尼等國市場的開拓機會,發現這些東南亞國家,因為宗教之故,雞為重要的經濟產業,衍生而出的糞便問題,也蘊藏龐大商機。   「以馬來西亞為例,養雞場多採用露天堆置堆肥,除了環境問題之外,尚有含水率過高致使堆肥溫度無法上升,不能以高溫消滅草種及病原菌,且積體過大翻堆不易等問題。」洪書群繼續補充,「而過度使用化肥,地力退化以及病蟲害導致作物欠收之問題,在馬來西亞也十分嚴重,種種因素皆加速他們想採用更有效有的糞汙處理系統意願。」   目前,特克斯「HMD高效處理系統」已獲馬來西亞養雞業者Lay Hong Bhd、Dindings及雪蘭莪州農業開發公司採用,未來仍將持續鎖定可複製應用的國家如孟加拉、越南外,在國內也將持續推廣。 創新農業科技鏈結國際舞臺   「以現有資源回收和事業廢棄物再利用的基礎,臺灣大有可能成為亞洲循環經濟的『熱點』,這不僅有助臺灣產業的國際合作,還能開拓臺灣與世界在循環經濟上的對話空間。」,洪歆怡與洪書群共同期許。   過去,臺灣在海外農耕隊的努力下,以行動拉近了與世界的距離,未來,臺灣則能以新一代的農業科技,鏈結國際。 【相關資訊】 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw
搬貨下田任我行,油電混合搬運車創造新商機
2018/02/06
傳統農用機械以柴油引擎為主,近年為解決空氣汙染問題而開始發展電動農機,但目前電動農機扭力不足,以至於無法滿足田間實際作業,也會因為負重過重而影響到車速,無法達到使用者對搬運速度的需求。 由國立嘉義大學(簡稱嘉大)艾群副校長帶領的嘉大團隊、國立成功大學團隊及南臺科技大學團隊以西螺果菜市場作為計畫發想地,思考如何讓農業機械可以田間運用又能在果菜市場運行卻不造成空氣汙染,團隊發現汽車採用的油電混合混合系統技術尚未被應用到農業機械上,從車輛發展的觀點來判斷,油電混合系統是農業機械未來發展趨勢。 以西螺果菜市場作為計畫發想地 農委會期望透過「推動農業科技產業全球運籌計畫」,讓我國在面對全球經濟快速變化時,可以讓國內農業從單純的生產型,轉變為有應用加值創新的產業,因此於2015年開始輔導研究團隊投入「農用柴油引擎油電混合搬運車研發」,將油電混合系統應用在農業機械上,滿足動力需求,並且降低汙染以及耗能。 研究團隊選定西螺果菜市場作為計畫發想地,這裡是全臺最大的果菜批發市場占地4公頃左右,每天蔬菜交易量高達1千公噸,場內蔬菜主要來自於附近產區採收、販運商從全國各地收集,以及山地蔬菜直接運至市場銷售。 市場建築屬於半密閉空間,場內運送貨物除了機車、貨車外,就是柴油拼裝車作為主要運輸工作,但目前西螺市場內使用的柴油拼裝車是單缸引擎,在運轉時會發出巨大聲響並排放出陣陣黑煙,造成空氣汙染問題,如能同時兼顧農田搬運及果菜市場內運輸,將獲得農機使用者青睞。 依照實際需求選擇動力模式 研究團隊先找出搬運機中容易製造大量煙霧的位置,導入油電系統減少排煙量,並考量使用者學習新型機械的狀況,因此以現行農用搬運機作為範本,在不更動操作介面的情況下進行油電混合系統架設,並新增過去農用搬運機缺少的儀表板,希望操作者能以最短時間上手使用。 團隊成員表示,臺灣早在6、7年前就已推動電動農業機械,雖然電動方式是對環境最好的選項:無汙染、無噪音,但是對農民來說電動農機有續航力以及充電問題,96V電動馬達電池在過度放電的情況下,平均壽命僅有6~8個月且電池售價達10萬元,對農民來說是不小的成本負擔。 這是國內第一部自製研發油電混合動力系統的農用搬運車,以柴油引擎動力為主,電力為輔,有純電、油電混合、純油三種模式,適合在果菜市場、農用道路或是農田等地使用,負重量可達1千公斤。電力是採用48V電動馬達電池,道路行駛時,可以透過柴油引擎動力替電池充電,除了可以縮短充電時間外,還可以避免過度放電延長電池壽命,保守估計電池壽命可長達2至3年,價格約落在2萬元左右。 開到一半沒電,還有柴油可以支援 農用柴油引擎油電混合搬運車的柴油使用量與傳統搬運機車輛相同,電池從完全沒電到充滿時間大概需要10個小時,本次研發車輛應用快充技術以及電池雙向平衡充電技術,在夜間可以透過研發的快速充電器EV Charger針對搭載的48V電動馬達電池進行快充。另外系統也會在日間行駛時依據電力需求,進行48V-to-12V降壓充電,供給車用電子設備電力(12V電池),或是在48V電池耗盡後進行12V-to-48V升壓充電,回充48V馬達電池。 團隊成員指出,使用者還是會擔心電動車行駛在路上故障或是沒電,車輛故障可能會造成新鮮蔬果被太陽曬壞或是阻礙果菜市場的通道,油電混合混合車能提供車輛另一種動力選擇,不用擔心沒電或是其中1項動力故障。值得一提的是,車輛搭載48V電池,若在農地等潮濕環境發生車輛漏電狀況,觸碰車身不用擔心會對人體造成致命傷害。 未來可望拓展外銷通路 研究團隊開發農用柴油引擎油電混合搬運車的過程中,發現目前沒有測定混合動力的法規,為了要測定這臺搬運車的動力而發展出「一種提供混合系統動力最佳化的性能測試平台」,正申請發明專利中,未來可以提供類似車輛進行動力檢驗。 此農用柴油引擎油電混合搬運車已技轉晟豐農業機械公司,業者表示會希望採用3期環保引擎降低空氣汙染,並改善農機實用性。團隊成員表示,從純電切換為純油狀態時,需要等待引擎啟動而有時間差,未來期望能進一步改善。 研究團隊看好國際市場,指出先前國內展覽已有國際廠商接觸,希望可以購買,目前最大目標為改良引擎,使其更環保,並減輕車體重量,讓油電混合搬運車更節能。 【相關資訊】 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw
澳法合資推動高抗性澱粉小麥研發
2018/01/31
近年來隨著健康意識抬頭,人們逐漸調整飲食與生活習慣,以預防糖尿病、肥胖、癌症或高血脂等症狀發生。由於穀物中含有豐富澱粉,而攝取過多精緻化穀物不益於身體健康,故澳洲的聯邦科學與工業研究組織(Commonwealth Scientific and Industrial Research Organisation;CSIRO) 與政府農業部投資的Grains Research and Development Corporation及法國公司Limagrain Céréales Ingrédients合作,希望增加小麥含有的抗性澱粉含量,食用後能夠減緩人體吸收效率,使得血糖不再急遽上升。   抗性澱粉(Resistant starch,RS)是一種膳食纖維,在腸道中不易被分解,需要更長的時間消化;相對而言血糖上升也較緩慢,故能減少脂肪堆積速度。然而,大部分加工澱粉食品中的抗性澱粉含量較低,若能了解基因性狀對穀物中抗性澱粉合成的影響,就能幫助基因或傳統育種選拔得到更適合現代人食用的產品。   先前文獻指出,抗性澱粉與直鏈澱粉(amylose)含量呈現正相關,而降低澱粉分支酵素(starch branching enzyme;SBE)會對不同穀物的產生的澱粉結構占有輕重不一的影響。而本研究則往前推進一步,選擇現有小麥品種Sunstate和Chara進行雜交,發現降低澱粉分支酵素中的SBEIIa和SBEIIb表現,可以幫助提高小麥中的直鏈澱粉含量;且由於SBEIIa和SBEIIb在染色體上距離非常接近,分析不同小麥中分離出的SBEIIa和SBEIIb基因中SNP (single nucleotide polymorphism,單核苷酸多態性)與遺傳缺失的序列,可幫助了解基因與抗性澱粉含量的關聯。此研究首次使得小麥的直鏈澱粉含量突破80%,而抗性澱粉占總澱粉的35%以上。【延伸閱讀】穿戴式酵母貼片偵測輻射傷害   在澳洲目前正準備種子生產、產品測試及申請許可,預計到2019年可將產品上架,讓消費者選購高纖維麵粉製成的產品。   相關研究報告發表於Plant Biotechnology Journal
新技術將啤酒轉換成燃料
2018/01/29
由於石化能源短時間內無法再生,近年來替代性能源與生質能源開發已成為各國發展重點,其中生質乙醇主要來源為發酵含糖量高的作物而得,燃燒後只生成水與二氧化碳,除了不易造成空氣汙染,二氧化碳排放也較石化燃料少。然而,乙醇易燃、燃燒熱較低且容易與水混合而腐蝕機器引擎,而異丁醇蒸氣壓較高、運輸方便、每單位燃燒所得能量更多,故許多科學家致力生產化學性質更穩定的異丁醇做為乙醇替代品。   已知乙醇與甲醇透過催化劑與高溫鹼性條件下可進行Guerbet反應脫水生成高級醇,但因催化劑不耐水,常造成催化效率不佳,且原料需使用無水乙醇,增加生產成本。而英國布里斯托爾大學(University of Bristol)使用預催化劑trans-[RuCl2(dppm)2]能增加此系統對水的耐受性,且使用氫氧化物催化劑,在78%的選擇性下異丁醇產率為36%;故能夠用於含水量高的粗發酵液原料。研究小組也測試使用酒精性飲料作為乙醇來源,在85%的選擇性下異丁醇產率為29%。【延伸閱讀】微生物能轉換酸乳清廢液為生物燃料   此外,丁醇早已是化學工業中的基本材料,用途廣泛,未來若能成功結合乙醇的釀造技術,將能擴大工業上生產生質丁醇的規模,提升其作為石化燃料替代品的重要性並降低丁醇的生產成本,也有助於化工產業的丁醇原料取得。
農科產業全球運籌,加速生物農藥產業化
2018/01/23
我國具有深厚的農業科技研發及應用之基礎,但能量散佈在產者、研究機構、大學校院,為增強國際貿易競爭力,必須透過整合加強各方合作模式,以建構產業價值鏈。 因此,農委會於2014年啟動「推動農業科技產業全球運籌」計畫,並由財團法人農業科技研究院(以下簡稱農科院)擔任跨領域產業化平台,協助整合上中下游研發能量,以增強業界技術面補強、整合研發及加值的國際化發展。 在這當中,生物農藥研發與商品化,被列為重點之一,因為與化學農藥相比,生物農藥,遠較於傳統化學農藥人體危險性較少,無農藥殘留問題,病蟲害專一性較高,可以針對病蟲害有效控制。 生物農藥產品受農藥管理法之規範,仍需要進行農藥登記申請,為了加速生物農藥產業化,如何簡化申請流程及加速研究成果商品化,成為本計畫重點目標。 開設快速通道  加速生物農藥商品化 在2014年到2017年,農業藥物毒物試驗所(以下簡稱藥毒所)與農委會科技處及動植物防疫檢疫局合作推動生物農藥產業化(整合型計畫),與農委會過去推動生物農藥商品化或者技轉不同的是,此計畫加速生物農藥流程,擴大增加GLP動物(毒理)試驗以及GLP理化試驗的接案量能。 GLP動物(毒理)試驗與GLP理化試驗的試驗項目為生物農藥對於口服、肺急毒性/致病性試驗,以及生物農藥的理化性質試驗,根據法規,這些試驗需要經過認證的GLP實驗室進行檢驗,在計畫推出前,國內雖有幾家大型農藥公司擁有這樣的實驗室,但學研單位希望能有一個第三方公正單位的GLP實驗室接受委託檢驗。 以往學研單位依賴向藥毒所申請生物農藥委託試驗,由於案件眾多,加上試驗進行需要時間,經常都是要排案等待,因此商品化時程易拖延,為解決這樣的問題,藥毒所針對學研單位開闢一間接受專案的試驗室,除了先進行書面預先審查服務外,並加速毒理、理化試驗的進行,增加審查速率,尤其生物農藥的書面審查採隨到隨審,儘管這是一條快軌,但GLP毒理試驗仍有積案排隊之情況,因此全球運籌計畫積極輔導農科院成立符合法規認證的GLP實驗室,以增加試驗量能以供學研單位申請,農科院在2016年10月中旬開始接案,讓有急需的單位能夠加速完成試驗。 全球運籌計畫  打響名號  成功技轉 這全程4年的計畫裡,已加速生物農藥商品化量能及委託試驗處理速度,讓臺灣開發生物農藥產品之學研單位可以投入,計畫為促成生物農藥順利登記上市,係以研究計畫成果成熟度較高的菌種為重點(例如液化澱粉芽孢桿菌),陸續於第2年開始才納入蟲害及生物性除草製劑等重點產品缺口之研究,在第3年,開始進行綜合防治測試,把先前2年研發中但尚未商品化的生物農藥納入害物綜合管理(IPM)體系,利用各單位彼此合作與協助田間試驗找出菌株的新用途。 液化澱粉芽孢桿菌是這次計畫的主軸與亮點,透過這個計畫商品化平台取得成功打響名號,統籌計畫主持人藥毒所生物藥劑組謝奉家組長說:「以前有人說液化澱粉芽孢桿菌是枯草桿菌的亞種,1967年後,在科學的新技術已經可以把它們分開。」他舉例說明,藥毒所的菌種庫,有數千支菌株,並會將其進行編號,再列出功效表,評估菌株是否有機會研發成商品,這些從不同地方篩出的菌株,有些是有可能被界定出是同一菌種,謝奉家說:「就像是杜賓狗,不同血緣還是不太一樣,也就是說儘管菌株都是液化澱粉芽孢桿菌種,但不同菌株的效果還是有差異。」 在2014年嘉農公司與統籌計畫中的高雄農改場進行生物農藥產學合作計畫,業者共同參與微生物製劑的研發過程,並評估未來商品化的可能性,以及潛在市場,最後成功地技術移轉液化澱粉芽孢桿菌PMB01,後續也投入相當多的人力與資金,進行農藥許可證的申請、量化生產以及推廣銷售。嘉農公司協理楊宜璋博士表示,加入這樣的計畫,能使業者更了解目前的政策規劃和研究單位的主要研發方向,並且可以從農民及植保製劑提供者的角度,回饋問題及農民的用藥情形。 解決資料準備不全問題  盼經驗模式的延續 謝奉家說:「有廠商跟我們說,在這項整合計畫之前,有些老師常拿著一瓶菌就去找廠商談技轉授權,廠商很有興趣地花了15萬、30萬拿到一瓶新菌株,但後續進行農藥登記時,發現製作登記文件困難重重,例如毒理、理化試驗、發酵量產、田間試驗等必需資料,導致廠商要花更多時間和金錢去處理,進行申請流程時,甚至會遇到困難而卡關,也是至今業界普遍抱怨的意見。」 一般而言,廠商若在申請生物農藥登記遇到困難,廠商可以向藥毒所單一窗口提出個案諮商,與藥毒所的所長或其他一級主管、組長、審查人員約時間諮商,獲得生物農藥申請上之充分資訊,減少個案送件所遇到的問題,以減少人力資源與時間的耗費。另外,廠商亦可選擇等待學研單位經由此商品化計畫管道,備妥相關試驗資料後,再與學研單位進行技轉,雖然賣給廠商菌株的價錢會提高至數百萬等級,不過廠商的購買意願卻不減反增,因為比起單純技轉菌株卻無相關的完整試驗文件,廠商更願意用金錢來換取登記時所需要時間,雖然購買菌株的成本增加,但廠商認為可以買到在預期時間內完成商業化的保證。 謝組長表示,藥毒所將努力繼續向農委會爭取計畫平台可以延續服務,這次計畫成果唯一缺憾就是多元性不夠,菌株來源有限,八株中有六株都是同一類的菌,因此在未來若有機會將朝向針對難防治、更多樣性新菌株研究。 相關資訊 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw
農科產業全球運籌,加速生物農藥產業化
2018/01/23
我國具有深厚的農業科技研發及應用之基礎,但能量散佈在產者、研究機構、大學校院,為增強國際貿易競爭力,必須透過整合加強各方合作模式,以建構產業價值鏈。 因此,農委會於2014年啟動「推動農業科技產業全球運籌」計畫,並由財團法人農業科技研究院(以下簡稱農科院)擔任跨領域產業化平台,協助整合上中下游研發能量,以增強業界技術面補強、整合研發及加值的國際化發展。 在這當中,生物農藥研發與商品化,被列為重點之一,因為與化學農藥相比,生物農藥,遠較於傳統化學農藥人體危險性較少,無農藥殘留問題,病蟲害專一性較高,可以針對病蟲害有效控制。 生物農藥產品受農藥管理法之規範,仍需要進行農藥登記申請,為了加速生物農藥產業化,如何簡化申請流程及加速研究成果商品化,成為本計畫重點目標。  開設快速通道  加速生物農藥商品化  在2014年到2017年,農業藥物毒物試驗所(以下簡稱藥毒所)與農委會科技處及動植物防疫檢疫局合作推動生物農藥產業化(整合型計畫),與農委會過去推動生物農藥商品化或者技轉不同的是,此計畫加速生物農藥流程,擴大增加GLP動物(毒理)試驗以及GLP理化試驗的接案量能。  GLP動物(毒理)試驗與GLP理化試驗的試驗項目為生物農藥對於口服、肺急毒性/致病性試驗,以及生物農藥的理化性質試驗,根據法規,這些試驗需要經過認證的GLP實驗室進行檢驗,在計畫推出前,國內雖有幾家大型農藥公司擁有這樣的實驗室,但學研單位希望能有一個第三方公正單位的GLP實驗室接受委託檢驗。     以往學研單位依賴向藥毒所申請生物農藥委託試驗,由於案件眾多,加上試驗進行需要時間,經常都是要排案等待,因此商品化時程易拖延,為解決這樣的問題,藥毒所針對學研單位開闢一間接受專案的試驗室,除了先進行書面預先審查服務外,並加速毒理、理化試驗的進行,增加審查速率,尤其生物農藥的書面審查採隨到隨審,儘管這是一條快軌,但GLP毒理試驗仍有積案排隊之情況,因此全球運籌計畫積極輔導農科院成立符合法規認證的GLP實驗室,以增加試驗量能以供學研單位申請,農科院在2016年10月中旬開始接案,讓有急需的單位能夠加速完成試驗。  全球運籌計畫  打響名號  成功技轉  這全程4年的計畫裡,已加速生物農藥商品化量能及委託試驗處理速度,讓臺灣開發生物農藥產品之學研單位可以投入,計畫為促成生物農藥順利登記上市,係以研究計畫成果成熟度較高的菌種為重點(例如液化澱粉芽孢桿菌),陸續於第2年開始才納入蟲害及生物性除草製劑等重點產品缺口之研究,在第3年,開始進行綜合防治測試,把先前2年研發中但尚未商品化的生物農藥納入害物綜合管理(IPM)體系,利用各單位彼此合作與協助田間試驗找出菌株的新用途。  液化澱粉芽孢桿菌是這次計畫的主軸與亮點,透過這個計畫商品化平台取得成功打響名號,統籌計畫主持人藥毒所生物藥劑組謝奉家組長說:「以前有人說液化澱粉芽孢桿菌是枯草桿菌的亞種,1967年後,在科學的新技術已經可以把它們分開。」他舉例說明,藥毒所的菌種庫,有數千支菌株,並會將其進行編號,再列出功效表,評估菌株是否有機會研發成商品,這些從不同地方篩出的菌株,有些是有可能被界定出是同一菌種,謝奉家說:「就像是杜賓狗,不同血緣還是不太一樣,也就是說儘管菌株都是液化澱粉芽孢桿菌種,但不同菌株的效果還是有差異。」  在2014年嘉農公司與統籌計畫中的高雄農改場進行生物農藥產學合作計畫,業者共同參與微生物製劑的研發過程,並評估未來商品化的可能性,以及潛在市場,最後成功地技術移轉液化澱粉芽孢桿菌PMB01,後續也投入相當多的人力與資金,進行農藥許可證的申請、量化生產以及推廣銷售。嘉農公司協理楊宜璋博士表示,加入這樣的計畫,能使業者更了解目前的政策規劃和研究單位的主要研發方向,並且可以從農民及植保製劑提供者的角度,回饋問題及農民的用藥情形。  解決資料準備不全問題  盼經驗模式的延續  謝奉家說:「有廠商跟我們說,在這項整合計畫之前,有些老師常拿著一瓶菌就去找廠商談技轉授權,廠商很有興趣地花了15萬、30萬拿到一瓶新菌株,但後續進行農藥登記時,發現製作登記文件困難重重,例如毒理、理化試驗、發酵量產、田間試驗等必需資料,導致廠商要花更多時間和金錢去處理,進行申請流程時,甚至會遇到困難而卡關,也是至今業界普遍抱怨的意見。」  一般而言,廠商若在申請生物農藥登記遇到困難,廠商可以向藥毒所單一窗口提出個案諮商,與藥毒所的所長或其他一級主管、組長、審查人員約時間諮商,獲得生物農藥申請上之充分資訊,減少個案送件所遇到的問題,以減少人力資源與時間的耗費。另外,廠商亦可選擇等待學研單位經由此商品化計畫管道,備妥相關試驗資料後,再與學研單位進行技轉,雖然賣給廠商菌株的價錢會提高至數百萬等級,不過廠商的購買意願卻不減反增,因為比起單純技轉菌株卻無相關的完整試驗文件,廠商更願意用金錢來換取登記時所需要時間,雖然購買菌株的成本增加,但廠商認為可以買到在預期時間內完成商業化的保證。 謝組長表示,藥毒所將努力繼續向農委會爭取計畫平台可以延續服務,這次計畫成果唯一缺憾就是多元性不夠,菌株來源有限,八株中有六株都是同一類的菌,因此在未來若有機會將朝向針對難防治、更多樣性新菌株研究。 相關資訊 想更進一步了解此專案研發成果細節,請逕洽財團法人農業科技研究院陳小姐,電話:03-5185092,信箱:1032201@mail.atri.org.tw。
生物性電子鼻幫助「聞」出腐敗味
2018/01/22
屍胺(Cadaverine;CV)是一種具有腐臭氣味的化合物,在動物身體組織腐爛時因蛋白質中的離胺酸(Lysine)脫去CO2而產生,高濃度屍胺會呈漿狀甚至結晶狀,能於空氣中發煙並具有一定毒性。生肉、生魚或其他海鮮放置一段時間後會逐漸腐敗,在腐敗初期由於內部所含屍胺甚少,因此無法經由外觀或氣味辨識;雖然可藉由烹煮殺死食物中的細菌,但屍胺等腐敗胺類卻無法消除,導致食用後的食物中毒與過敏現象。目前屍胺可利用酵素免疫分析法(Enzyme-Linked ImmunoSorbent Assay;ELISA)、高壓液相層析法(High Performance Liquid Chromatography;HPLC)、比色法等方法偵測,但各國並無相關腐敗胺類的統一規範。   由於一般使用的偵測法需要高度的專業性與實驗室儀器,無法提供監測食品安全的即時性,故韓國首爾大學(Seoul National University)開發了功能性生物電子鼻(oriented nanodisc (ND)-functionalized bioelectronic nose (ONBN))能用來檢測生鮮食品樣本中的屍胺。其中的生物性受體來自於斑馬魚中對屍胺敏感性高的受體膜蛋白TAAR13c (trace-amine-associated receptor 13c),將相關基因放入大腸桿菌中製造大量蛋白,純化後放入nanodiscs,藉由nanodiscs穩定膜蛋白結構與生理功能,之後再結合奈米碳管薄膜場效電晶體(carbon nanotube-based field effect transistors)形成高靈敏度的生物電子鼻。【延伸閱讀】牛肉經分解而得的多肽可以減少苦味   雖然早前已有研究指出斑馬魚中含有對屍胺具高度親合性的受體,但遲遲無法突破完整分離與穩定此受體膜蛋白之技術,故此技術可視為機械與生物功能性結合的相關案例之一;雖然初步測試只有檢測食品新鮮度,但未來電子鼻或許可應用至偵測食品防腐劑含量或甚至發現屍體,幫助警方辦案及救災使用。   相關研究發表於美國化學學會的ACS Nano
植物適用的可穿戴式裝置
2018/01/18
在全球氣候變遷與環境汙染的影響下,農業生產面臨重大挑戰,然而全球人口數量仍持續上漲,為了在維護糧食安全、因應氣候變遷、維護天然資源利用之永續性與生產利潤上達成理想平衡,智慧型農業為未來發展之重要目標,期望藉由有效資源分配與利用,提升傳統農業的生產效率。   在偵測植物用水方面,美國愛荷華州立大學(Iowa State University)開發了用於植物的穿戴式裝置,能夠及時提供植物的水分運輸數據給研究人員與農民。此裝置的材料來源為奈米等級大小的石墨烯(graphene),並使用聚二甲基矽氧烷(polydimethylsiloxane;PDMS)與3D列印幫助精確建構不同形狀的石墨烯元件,將其轉印到膠帶上,此技術可產出微小且靈敏的感應器,寬度只有頭髮的二十分之一。【延伸閱讀】火腿的核磁共振攝影   石墨烯雖薄但堅硬,具有良好的導電性,能用於一般的可穿戴式裝置與感受細微的壓力變化,例如偵測手部運動的智慧手套;而且石墨烯還對水蒸氣非常敏感,此感應器由氧化石墨烯製成,貼在植物上能經由水蒸氣改變材料的導電率,可用以精準測量葉片蒸散作用的效率。此外,製造感應器的成本低廉,且測試後確定不影響植株生產或作物生產;未來經由適當修改後或許還可應用於偵測植物疾病或藥劑影響,且此概念或可運用於醫學診斷之感應器或環境監測方面,潛力無限。
大黃蜂透過溫度差異來區分花朵
2018/01/17
許多開花植物需要依靠動物傳播花粉,幫助交配繁殖下一代,而大部分的授粉動物通常是蜜蜂等昆蟲。為了吸引昆蟲來訪,開花植物會以氣味、顏色等信號影響昆蟲的感官,使得媒介昆蟲接近並記住相似的花朵位置。而媒介昆蟲經過演化會一步步調整覓食行為,有利於其在環境中找到更正確的花卉,提高植物的繁殖率,植物族群上升也更有益於蜂群壯大。有鑑於過度施藥、汙染、全球氣候變遷等因素,授粉昆蟲數量急遽減少,因此了解植物誘引媒介昆蟲的方式非常重要。   花朵的溫度差異可能來自於植株代謝產熱或太陽輻射,經由色素分布的差異性與花朵結構影響,不同物種在同樣條件下的升溫具有高低之分。授粉昆蟲利用不同的感官條件辨識不同花卉,而大黃蜂(bumblebees)、蜜蜂(honeybees)和無針蜂(stingless bees)能夠根據溫度差異來區分花朵。【延伸閱讀】單一化種植可能使得蜜蜂難以對抗疾病與逆境   英國的布里斯托大學(University of Bristol)研究指出,透過熱成像顯示花朵內不同區域的溫度差異後,以人造花模擬花朵溫度能觀察到大黃蜂準確區分人造花中溫度不同的區域,並準確地停留在人造花中央,如同在鮮花中一般;因此認為花朵溫度的特異性可能協助授粉動物辨識不同物種的鮮花。此外花朵的溫度與花蜜也可以幫助動物保暖,鼓勵動物在較冷的環境中仍能搜尋和採集花蜜。未來將會加強了解植株內溫度分布的差異如何吸引蜂群,以及氣候變化對蜂群的額外影響。
磷酸鈣—植物防禦的外衣
2018/01/16
生物礦化作用(biomineralization)指的是生物透過控制體內有機與無機分子移動而形成結晶的行為,一般廣泛用於硬骨骼、外殼、牙齒等組織之構成;例如磷酸鈣(Calcium phosphate)為構成人體牙齒和骨骼的典型成分,而矽(Silica)則可保護植物表面。過往認為,植物中存在的生物礦物質以二氧化矽、碳酸鈣與草酸鈣為主,從未有人將磷酸鈣列入其中,但德國波昂大學(University of Bonn)的植物學家證明,磷酸鈣在部分高等植物中存在。   植物的礦化作用以蕁麻為例,蕁麻科植物表面覆蓋許多細小刺毛,為具有倒鉤的毛狀體(trichomes),尖端具有礦化之碳酸鈣與二氧化矽,能夠保護植物免於食草動物的損害。而刺蓮花科 (rock nettle family;學名Loasaceae)植物也具有類似的毛狀構造,基部為多細胞構成,頂部則為尖刺狀單細胞,尖端為球體,此球體易受外力作用而脫落,使得尖刺可注入刺激性物質於動物體內。   研究人員以掃描式電子顯微鏡附加能量色散X射線光譜儀(Scanning Electron Microscope/ energy dispersive X-ray microanalysis, SEM/EDS)和拉曼光譜儀(Raman spectrometer)觀察毛狀體外觀,發現尖端含有高濃度的鈣與磷,而非尖端部位只有少量的磷,顯示刺蓮花科毛狀體尖端的礦化作用以細胞壁外形成奈米結晶羥基磷灰石(nanocrystalline hydroxylated apatite) 為主,且磷酸鈣硬度會比二氧化矽及碳酸鈣更強,表示植物會調整不同物質的運送,造成礦化成分與強度具位置的差異性,而不同物種間的礦化成分差異性也可能是來自於遺傳控制。【延伸閱讀】植物中的長壽基因   雖然目前尚未了解刺蓮花科中部分物種會表現出磷酸鈣相關的特殊礦化成分,但這些結構的觀察結果除了發現自然界礦化的新系統,也許將來可用於纖維素—磷酸鈣相關的仿生複合材料的礦化製作,使得複合材料的生物相容性更高,或用於開發抗蟲作物與保護植物的防護劑。相關研究發表於Nature旗下的Scientific Reports。
加速植物育種新技術
2018/01/15
近年來幾種主要作物的產量改良速度已經進入停滯期,但全球人口仍日益增長,加上全球氣候變化影響,使產量提升受到侷限,人類面臨著培育高產作物的巨大挑戰,因此科學家們朝向基因測試、環境改良、品種篩選等不同方式努力,以期保障全球糧食安全。   澳洲昆士蘭大學 (University of Queensland)和悉尼大學 (University of Sydney)的研究小組開發了一項稱為”speed breeding”的技術,能大幅縮短作物繁殖時間,並加速育種和研究計劃進行。此技術是利用在溫室之人造空間中完全控制生長環境,並使用 LED燈幫助植株每天行22小時的高強度光合作用;與傳統鈉蒸氣燈相比,LED燈成本低廉,且能減少多餘的熱能耗損,在利用此技術下,研究團隊在8週內完成了小麥生產,而此技術的發表也表示現今有能力達到每年可多生產六代的小麥,比普遍使用的 shuttle breeding技術增加三倍。目前已證明春小麥(spring wheat,學名Triticum aestivum),硬粒小麥(durum wheat,學名T. durum),大麥(barley,學名Hordeum vulgare),鷹嘴豆(chickpea,學名 Cicer arietinum)和豌豆(pea,學名Pisum sativum)可每年生產六代,而芥花(canola,學名Brassica napus)則可年產四代,皆較傳統育種技術增加許多。   同時該技術開發的第一作者Brande Wulff表示,快速繁殖技術將為 21世紀的全球挑戰提供了新的解決辦法。英國RAGT Seeds公司的小麥病理學家 Ruth Bryant表示,育種者一直在尋找方法來加速品種進入市場的速度,因此對速度育種的概念非常感興趣,目前正與Wulff博士密切合作,以促使此技術盡速進入商業用途,而澳洲Dow AgroSciences公司的小麥育種者Allan Rattey博士也利用這項技術培育了收穫前較不容易發芽的小麥。【延伸閱讀】SNAP標籤蛋白為植物細胞成像的新方法   此次育種技術的突破可能是繼 shuttle breeding技術後新一波的綠色革命,同時 speed breeding將能作為一個平臺,並結合其他育種與CRISPR基因編輯之技術,幫助研究作物的遺傳變化,以加速品種改良速度。該技術相關研究結果亦發表於Nature Plants。

網站導覽
活動資訊
訂閱RSS
電子報訂閱