MENU iconMENU
數位科技
數位科技
2019/08/21
隨著智慧農業技術的日益高速發展下,藉由無人機、大數據、農業生產管理系統等自動化先進技術之應用,所帶來之效益將有效解決勞動力不足問題與提升農作業生產效率。
2019/08/20
美國奧勒岡州立大學研究團隊根據模型推算全球17種土地覆蓋類型的太陽能轉換效率,農耕地的覆蓋類型為主的太陽能發電具有最佳的光電轉換效率,僅需在部分農地上部署一定比例的太陽能板,便可望填補全球發電缺口。
2019/08/15
德國萊布尼茲植物遺傳與作物研究所揭示了記錄蒐集長達70多年的小麥農藝性狀,蒐集來自世界各地有關春麥、冬麥的在地小麥種子,並記錄蒐集作物的農園藝性狀,供後續培育新種及遺傳研究方面的應用。
2019/08/07
日本農研機構深化分析1983年至2009年間玉米、水稻、大豆、小麥等作物乾旱指數與農糧收穫數據進行線性回歸及相關的統計分析,發現平均每次乾旱事件所影響的收穫損失估計造成1,660億美元的經濟損失。
2019/08/05
美國北卡羅來納州立大學研究團隊以茄科晚疫病作為研究對象,利用表現在葉表的有機物特性,開發出能反映不同化學特性的試紙,經揮發性有機物資料庫進行比對後,便可獲知葉片是否受感染,有助於田間快速篩檢病原。
2019/07/29
美國伊利諾大學研究團隊在既有的作物生理指數模型基礎上,加入新發現的植物重要生理參數,並透過電腦模擬的結果,快速找出耐旱品系進行培育,以因應全球氣候近年快速暖化的趨勢。
2019/07/24
美國康乃爾大學與中國清華大學共同研發智慧灌溉模型,透過植物生理感測器偵測結果,佐歷史氣候數據,以機器學習技術預測近期可能的氣候資訊,經一連串的數據蒐集與分析預測,可精確地計算出灌溉水量,避免不必要的水資源浪費。
2019/07/22
英國劍橋大學開發擁有機器學習能力的蔬菜收割機器人,以電腦視覺系統及收割系統作為機器雙系統處理程式,透過頂端相機捕獲影像,再透過影像判識的方法,判斷影像中的萵苣成熟與否、是否受嚴重病蟲害影響等,以作為是否執行後續收割作業的依據。
2019/07/02
荷蘭鹿特丹擁有全球首座水上漂浮牧場,配有自動化畜牧場機械裝置,並裝載太陽能板、雨水收集與淨化設備,能將城市產生的生物質予以回收和循環利用。被豢養的乳牛飼料多為城市地區的穀物廢棄物,生產的乳製品能提供給當地居民,為農業永續共盡一份心力。
2019/06/27
美國佛蒙特大學研究團隊藉由分析人們在電玩遊戲裡的決策行為,模擬出不同策略對疾病擴散的影響,玩家在面對疾病時所採取的態度將是影響疾病事件發生與否的主因之一,證實人為決策在防疫策略及疾病流行中的重要性。
2019/06/26
隨著藉由經驗累加、可藉由眼力判斷鮪魚肉質好壞的專業職人日趨高齡,使得日本許多魚貨中盤商開始面臨缺乏能夠協助判斷鮪魚肉質的人力,進而可能採購肉質不佳的魚貨,導致影響收益。因此,日本電通與雙日公司攜手合作,藉由人工智慧技術,讓使用者可直接透過手機相機功能拍攝魚尾切面,即可快速分析鮪魚肉質,並且以5個等級作為結果評鑑。   由於鮪魚在日本漁業成為重點交易肉品,同時也是日式料理中作為壽司的主要肉品之一,因此在市場的交易金額也相當驚人,因此許多魚貨中盤商均仰賴專業職人協助判斷所需採購魚肉品質,避免採購品相不佳的魚貨,導致後續成交價格不理想。   藉由手機app以拍照方式分析判斷魚肉品質,雖然快速、簡單,但畢竟影響魚肉品質的因素很多,包含捕撈方式、所處漁場環境,以及捕獲當下的處理方式,都會影響魚肉實際品質,因此要能精準判斷魚肉品質,實際上需要累積10年左右的鑑定經驗。   而透過魚尾切面進行判斷,實際上只是判斷魚肉品質好壞的其中一個方式,但藉由人工智慧技術應用之下,則可成為一般人簡單、大致判斷魚肉品質的辦法。依照說明,由日本電通與雙日公司攜手合作製作的「TUNA SCOPE」,其識別結果約有85%比例與專業職人一致,作為一般快速判斷魚肉品質使用的話,其實也有相當值得參考價值。   在持續藉由人工智慧分析學習之下,或許日後將有可能透過整合更多分析判斷數據,讓電腦系統能更精準地分析鮪魚肉質。
2019/06/25
山羊(又稱家山羊,英文名:domestic goat,學名:Capra aegagrus hircus)是最早被人為馴化的家畜之一。最早馴化山羊的目的除了取其毛、肉、奶之外,其羊皮亦可作為羊皮紙書寫及羊皮材質之水袋,可謂用途十分廣泛的牲畜。人們在長期觀察山羊攝食的行為發現,山羊在進食時,往往不慎將植物葉片上的粉塵、沙土甚至是沙粒一同攝入口腔咀嚼後吞嚥,這樣的行為被認為可能會令牙齒遭沙粒磨壞。另一方面,由於山羊為反芻動物,因此極有可能將具攝入消化系統之食物,重新送回口腔再咀嚼,同時將先前吞嚥到消化系統的沙粒重新送回口腔,造成牙齒二次傷害。然而經長期的觀察卻發現山羊的牙齒不但十分健康,也鮮少有物理性磨損的痕跡,這背後的機制引起科學家的興趣。   來自瑞士蘇黎世大學(University of Zurich)、南非自由省大學(University of the Free State)與德國哥廷根大學(University of Goettingen)的聯合研究團隊,經電腦斷層(Computed Tomography,簡稱CT)掃描山羊的消化系統及解剖方面的研究,終於找出山羊攝入沙粒卻不讓牙齒磨損受傷的主要原因。研究團隊總共飼養28頭山羊並分成若干組,每組分別餵食含不同程度的沙粒飼料,之後連續飼養半年,期間利用電腦斷層圖像記錄沙粒在羊隻消化道的分布情況,最後再透過解剖犧牲的做法,觀察沙粒分布的實際位置。   研究團隊發現,沙粒分布在山羊體消化道中不同的位置,沙粒會伴隨著消化系統前端所分解成小顆粒食物殘渣,一同進到反芻動物的第四個胃—皺胃,之後與末端食物殘渣一同混和成糞便之後排出體外。研究團隊經觀察推論後認為,初攝入的大型食物碎塊會保留在前胃待分解儲存,這段過程被研究團隊認為具有”清洗”食物的功能,能過濾食物上的沙粒,讓再度反芻的食物不具沙粒,這也是山羊長期咀嚼反芻食物卻能保持牙齒健康避免磨損的主要因素。【延伸閱讀】日美合作共同開發自動化之大豆品質管理與監控系統   該研究主要解釋為何反芻動物的牙齒不被食物殘留的沙粒所磨損。另外研究也認為,反芻動物的牙齒磨損程度不應做為古生物學taxon-free分類研究上,鑑別部分哺乳動物食性與物種形態的分類特徵,畢竟食性相同的生物未必產生相同的牙齒磨痕,而反芻生物就是其中的例子。   該研究由瑞士國家科學基金會(Swiss National Science Foundation)資助,研究的重大發現已發表在<Mammalian Biology>。

網站導覽
活動資訊
訂閱RSS
電子報訂閱