MENU
文章
文章
2018/05/17
歸功於現代繁養殖技術的進步,母豬一胎可以生出數量較多的小豬,泌乳量也較多;但為了維持小豬的存活,母豬需要進食更多飼料以產生母乳,這也容易導致母豬的體溫增加,現今母豬的產熱量比1980年代的母豬高出55%-70%。由於豬屬於恆溫動物,皮下脂肪較厚且汗腺不發達,不容易通過皮膚散熱;一但豬隻體溫過高就需要減少進食量或是以喘氣散熱,遇到炎熱潮濕的夏季有可能導致豬隻中暑、性慾降低、泌乳量減少、難產或流產等情形。根據估計,美國豬肉產業每年須付出超過3.6億美元的成本以解決豬隻熱緊迫( Heat Stress )的問題。   使用空調冷卻整個房間或畜舍花費的電費較高,且降溫速度緩慢,不但不符合經濟效益,也不符合聯合國所提出之環境永續目標。美國普渡大學(Purdue University)農業及生物工程系開發出一種豬隻專用的冷卻墊,將2英尺×4英尺的鋁板架設於高密度聚乙烯底座與銅管上,並加裝監測溫度的感測器,需要散熱的母豬能躺在散熱墊上,藉由感測器決定何時更換銅管中的冷水,以保持母豬體表涼爽。【延伸閱讀】便攜式設備幫助偵測假酒   在高達35℃的環境溫度測試中,母豬呼吸次數可從每分鐘120次呼吸降至45次,且冷卻墊可明顯降低母豬的陰道與直腸溫度,冷卻水流速越快,效果越佳。此外,由於散熱墊面積只能容納一隻母豬,因此需要保溫的小豬在餵奶時不會直接接觸到冰冷的散熱墊。面對全球暖化,使用此散熱墊可以減少豬隻降溫所需的能源與相關成本,目前開發者正積極找尋相關的技術授權管道,相關論文則發表於〈The Professional Animal Scientist〉、〈Applied Engineering in Agriculture〉及〈Livestock Science〉。
2018/05/16
工業革命後的人類活動需要燃燒大量的石化燃料,雖然短期內可產生大量的能量以供社會進步與工商業活動發展;但這些石化燃料同時也是早期固定並儲存在地球上的碳,短時間內大量的碳排放已使得全球暖化逐漸嚴重,全球溫度提高會導致現有之生態系統改變,對人類造成不良後果。因此近年來各界極力推行生物能源碳捕集與封存(Bioenergy Carbon Capture and Storage,BECCS)的概念,以期有效減少大氣中的二氧化碳。   美國康乃爾大學(Cornell University)與英國Cinglas合作,提出了一個BECCS系統,此系統中包含一個121公頃的藻類培養設施與一個2,680公頃的桉樹森林。其中桉樹可作為生物質燃料,進行熱電聯產(combined heat and power,CHP);而藻類與大豆相比,每公頃可產生27倍的蛋白質,除了具固碳作用外也可收集脫水後利用。研究中評估了生產總成本、用水量、生物量、營養素與碳吸收量、產生電力與環境影響等,與種植大豆相比,此系統除了可產生與大豆相同的蛋白質以外,還能額外產生61.5TJ的能量且每年封存29,600噸二氧化碳,因此可視為是一種具潛力的二氧化碳的負排放系統。【延伸閱讀】紅樹林藍碳估算新方法   然而,BECCS系統所座落的環境會影響系統運作時的效率和營運成本,且藻類後續的應用領域也會影響其銷售價格,因此此研究中所探討的成本計算只能作為一時參考,但也提供我們設置固碳系統的嶄新想法。
2018/05/15
食品中常添加蔗糖或甜菊糖等甜味劑以增添風味,這些甜味劑由於甜度極高,需要使用澱粉或麥芽糊精等澱粉衍生物以稀釋其在食品中的濃度。但食用麥芽糊精等添加物於人體內分解後容易使得血糖快速上升,長期下來則可能導致肥胖,並增加罹患心血管疾病與代謝症候群的機會;因此開發有益於身體的替代物,有助於消費者在選購食品的同時也滿足其對於健康的考量。   據聯合國糧農組織公佈的統計數據顯示,每年全世界約釀造近2億噸啤酒,其中歐盟佔了約20%,光是瑞士每年就產生近8萬噸釀酒殘渣,目前世界上已經有許多再利用殘渣的方式,包含酒粕入菜調味、醃漬、皮膚保養、製成動物飼料等多種用途。而現在瑞士洛桑聯邦理工學院(École polytechnique fédérale de Lausanne,EPFL) 的Embien Technologies則利用了釀酒剩下的穀物殘渣作為原料,將其中的可溶性纖維分解成只有三或四個糖分子組成的低分子量β-葡聚醣,除了可循環利用近50%的穀物殘渣外,這些小分子聚醣亦有助於降低小鼠血糖和膽固醇,並調節免疫反應。【延伸閱讀】新發酵技術,保留可可豆的天然果香味   廢棄穀物殘渣經過Embien Technologies的專利加工後就可搖身一變成為對身體有益的食品添加物,此加工流程可重複多次卻不降低效率,且比起現有的加工程序縮短近30倍,剩下的木質素、蛋白質與油脂也可以再度利用,這樣的循環加工的方式不但更符合永續利用的原則,也有可能改變食品製造商選擇原料的決策。
2018/05/14
大氣、海洋和陸地是地球上的三大碳儲存庫,工業革命發生前,人類活動所製造的二氧化碳穩定地在此三大儲存庫中循環;但工業革命後,人類對能源的需求逐漸提升,短時間內大量燃燒石化燃料後產生的二氧化碳除了造成溫室效應外,也會透過碳循環進入海洋,造成海洋酸化(Ocean Acidification),使得動物碳酸鈣外殼、骨骼與珊瑚礁的融解速度大於製造速度,除了不利其生長,更會影響現今海中食物網的穩定性。   先前瑞典的研究顯示,在人工模擬環境Mesocosm中,隨著海水酸性增加,大西洋鯡魚(Clupea harengus)的幼苗生存率會隨之提升。而德國基爾亥姆霍茲海洋研究中心(GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel)則針對酸化環境中浮游生物(食物量)的變化,間接觀察二氧化碳對鯡魚的存活性影響。該系統將鯡魚幼苗暴露於高二氧化碳環境(研究者預測本世紀末將達到760 μatm pCO2)長達113天,結果發現魚苗存活率顯著提高了19±2%,經過浮游生物的族群分析,認為可能因酸性環境導致浮游生物增加,使得鯡魚等高級消費者間接受惠;且鯡魚的產卵環境主要靠近海底,比起在海水表面產卵的鱈魚更具有存活優勢。【延伸閱讀】海洋酸化將會影響魚類嗅覺   除了酸鹼值變動,海洋溫度也是影響物種遷徙的因素,由於冷水溶解的二氧化碳較多,因此海中的二氧化碳能透過溫鹽環流帶到底層海水儲存。若海洋環境未來持續改變,則區域性海域的生物結構可能因其環境適應性不同而發生變化。   相關研究發表於<Nature Ecology & Evolution>
2018/05/11
農業發展歷史悠久,各地農業隨著漸趨專業化的發展,風險管理問題逐漸浮上檯面,因此越來越多跨領域專家爭相投入於農業環境監測與風險預警的領域。其中,農作物的病蟲害預警系統是農業風險管控中不可或缺的一環,為了強化資訊蒐集,提供客戶即時與方便的服務,以色列的Saillog公司推出免費的手機應用程式-Agrio,用戶可拍攝疑似生病的作物照片並上傳到平台,經由人工智慧學習和視覺辨識計算以辨別植物病害,使其在短時間內收到作物診斷和處理建議。     Agrio的發展經過以色列、美國和印度的農藝師測試,於2017年時就可供Android和iPhone系統下載使用,此程式具有11種語言,包含英語、法語、阿拉伯語、印地安語、坦米爾語和越南語等。若是遇到較不常見的作物病害,團隊中的農業專家也能另外提供協助,相關結果也能紀錄於程式資料庫中以修正人工智慧的學習;隨著時間的推移,病害預測與判斷將會更趨精確。【延伸閱讀】結合小農經驗與人工智慧將有助於提升玉米產量   此外,Saillog最近宣布推出一項新功能-AgrioShield警報系統,能夠通知農田附近地區發現的病蟲害,並且提出農民可採取的早期預防方式以減少後期的產量損失;目前AgrioShield已發送了蚜蟲、香蕉葉斑病和晚疫病等7種已知病蟲害感染的警報。雖然Agrio是免費程式,但使用Agrioshield需負擔每月2美元的成本,公司考慮未來將降低價格以提高使用普及率。
2018/05/10
膠原蛋白(collagen)是人體內含量最豐富的蛋白質,約占人體總蛋白質的25-35%,可組成皮膚、骨骼、韌帶、血管、角膜等構造。膠原蛋白由於特殊的三股螺旋體多胜肽鏈結構,能夠在人體組織之間產生骨架般的支撐保護力、彈性與伸展性,透過調節控制分子通過與調控細胞組織的生理能力,也可以修護組織促進傷口癒合。因此,膠原蛋白不僅盛行於美容、保健食品,市面上也販售醫用級膠原蛋白傷口敷料、人工硬骨、人工軟骨、骨骼填補劑等醫療用品,同時人工眼角膜及新藥劑型也處於研發階段。然而,目前市面上主要使用的膠原蛋白多半來自於豬、牛、雞等動物來源,然而畜牧動物的基因遺傳特性與人類較為接近,若萃取膠原蛋白的動物取自於傳染病疫區,則可能增加使用者連帶感染之風險。   新加坡南洋理工大學(Nanyang Technological University)研發團隊在Acta Biomaterialia期刊發表了近期的研究結果,實驗團隊與當地魚場合作,使用吳郭魚(Tilapia)、蛇頭魚(Snakehead fish)、鱸魚(Sea bass)之魚鱗作為原料,將從魚鱗萃取的第一型膠原蛋白進行甲基化修飾,並利用1,4-丁二醇縮水甘油醚 (1,4-butanediol diglycidyl ether)交聯聚合,改善了魚鱗膠原蛋白的物理性質以及低熱穩定性,創造出水溶性膠原蛋白,提供了此類膠原蛋白加入藥物的可能性。另外,透過觀察不同魚鱗製造的膠原貼片於小鼠體內的生物相容性實驗,發現植入膠原貼片可改善附近的血管和淋巴管的生長情形,並加速血管癒合。【延伸閱讀】棉花纖維氣凝膠於醫療上之應用   初步成本預估,從10克魚鱗就能取得約200毫克的膠原蛋白,100毫克的膠原蛋白成本大約4星幣。而根據聯合國糧農組織發布的2016年世界漁業和水產養殖狀況報告,預估至2025年時水產養殖產量將達到1.02億噸;處理魚貨的過程中,大量魚鱗常直接作為廢棄物丟棄,實為可惜;若能利用低成本魚鱗作為醫用膠原蛋白來源,除了幫助水產加值利用,也能避免來自豬皮、牛皮等來源所產生的人畜共通疾病與宗教議題。   相關研究發表於<Acta Biomaterialia>
2018/05/09
擁有潔淨水源是人類生活的最低保障之一,然而隨著人類活動與工業汙染的增加,造成可用水已逐漸匱乏。地球上的淡水資源有限,主要包含在地底蓄水層、地表逕流和大氣層中,以及少量的海水淡化而得。居住於汙染地區的人們可能因為不乾淨的水源而感染疾病,或是為搶奪珍貴的淡水資源而造成國際關係的緊張。此外,由於全球氣候變遷漸趨明顯,使得極端天氣出現的頻率越來越高,在嚴重的天然災害發生後可能會發生無法預測的缺水情況,因此尋找穩定供應乾淨水源的方式便顯得十分重要。   地球上約有98%的海水水體,若是能找出適當的海水淡化方式,將對於人類未來生活有莫大助益。目前海水淡化方式主要為薄膜法及蒸發法兩大類,薄膜法是利用各式纖維薄膜隔絕海水中的鹽分,從而過濾出淡水以供人類使用;蒸發法主要是利用太陽能或其他能量來源加熱海水,蒸發出的水氣收集並凝結後就成為人類可使用的淡水。【延伸閱讀】新型微生物菌株A6可幫助處理水污染   考量到現今使用技術的轉化成本與能量耗損,海水淡化一直無法完全普及到現在的人類生活。美國德州大學奧斯汀分校(The University of Texas at Austin) 材料科學與機械工程系利用聚乙烯醇(polyvinyl alcohol,PVA)和聚吡咯(polypyrrole,PPy)開發出一種混和水凝膠,同時具有可吸收太陽能的半導體性質和親水性質,這種水凝膠可幫助人們直接利用環境中的太陽能進行海水蒸發與淡化。經過室外測試,每天的蒸餾水產量高達18-23公升/平方公尺,且此種水凝膠能夠依據現有的海水淡化系統的需求進行改造。   研究人員採用死海中的水進行實驗,死海水體通過水凝膠後成功減少鹽度至美國環境保護署和世界衛生組織認定的飲用水標準,此技術目前已進行專利申請,未來也朝向商業化目標而努力,以應付全世界對淡水水體的需求。   相關研究發表於<Nature Nanotechnology>
2018/05/08
人類現今的便利生活倚靠於大量能源的使用,自工業時代以來主要以燃燒石化燃料產生能量為主;然而石化燃料並非取之不盡,因此各國政府也積極找尋其他的能源轉化方式,包含核能發電、太陽能發電、水力發電、風力發電、潮汐發電、地熱發電與生物燃料等。生物燃料是指由生物質所製成的燃料,能夠取代汽油或柴油的使用,且通常不需特別改變現行使用的引擎構造。而農業是少數能自行生產生物燃料的產業之一,以自然界中廣泛存在的纖維素作為原料,經由化學或生物轉化成醇類以供燃燒利用,除了可循環使用環境中的含碳資源,燃燒後所排出的氣體也較為乾淨,有效減少農業廢棄物與空氣汙染。【延伸閱讀】葡萄牙利用100%的食用油作為大眾運輸燃料   轉化纖維素的目標產物多半為生質乙醇與丁醇,丁醇與乙醇相比下具有更多使用優勢,包含低揮發性、低機器腐蝕性、高熱值且與汽油的混和比更高,但目前將纖維素生物質轉化為生質丁醇的技術成本較高,且丁醇對生物毒性較高,不易由微生物直接轉換得到,故複雜的處理步驟與昂貴的化學轉化成本一直是生質丁醇無法普及的原因。新加坡大學(National University of Singapore)土木與環境工程學系(the Department of Civil and Environmental Engineering)於養殖蘑菇的堆肥中分離出細菌Thermoanaerobacterium thermosaccharolyticum strain TG57,能夠幫助纖維素和木聚醣(xylose)直接轉化為丁醇。研究團隊不但在TG57細菌基因組中發現了butanol dehydrogenase (Bdh)、endocellulase、cellobiohydrolase的相關序列,也發現活躍的外泌系統能不斷促使丁醇向外排出,減少丁醇積聚於細胞中而引發生物毒性,本次研究測試可產生丁醇1.93g /L,產率為0.20 g/g。   由於TG57是經由在蘑菇堆肥中長達兩年的遺傳轉變中選擇而得,不需再經人為改變菌體基因,是一種具有潛力的丁醇生產微生物,能夠縮短纖維素前期轉化的時間,研究團隊未來將持續研究TG57的轉化表現,並設計相關的分子標記以提高生物丁醇的產率及產量。    相關研究發表於<Science Advanced>
2018/05/07
根據世界衛生組織的報告,食品來源性致病菌每年導致約6億人生病和42萬人死亡,其中約30%為5歲以下的兒童。商店或賣場中所販售的食品標籤上通常會明確標示「有效日期」或是「保存期限」,用以提醒消費者購買時該商品的新鮮度。然而食品新鮮度可能因儲藏環境溫度、濕度與包裝方式不同而有所區別,民眾選購時無法僅以肉眼判斷商品是否已受到微量汙染,往往造成食用後才因食品中毒現象而檢討該商品來源與運送中可能產生的風險。為了改善此種被動式的防護措施,加拿大麥克馬斯特大學(McMaster University)開發出一種透明貼片,上頭的分子能在接觸汙染食品時發出螢光訊號,此貼片可直接加入食品包裝,用於監測有害的食品汙染細菌,例如大腸桿菌與沙門氏菌。【延伸閱讀】矽藻土可用於改善食品安全檢測技術   研究人員將環烯烴聚合物(cyclo-olefin polymer,COP)與對大腸桿菌具專一性的螢光核酸探針(RNA-cleaving fluorogenic DNAzyme probe)結合,當大腸桿菌產生的特異性蛋白與探針接觸時就會導致螢光產生,只要搭配智慧型手機或其他簡易儀器讀取螢光訊號就能知道食品是否已經遭受汙染,不須再取出貼片。實驗結果顯示此貼片在pH 3-9的環境下具有至少14天的高度穩定性,且檢測蘋果汁與肉中的大腸桿菌濃度可到達10^3 CFU/mL。由於材料簡單,此貼片非常適合大量生產,除了可適用於食品包裝,也能擴展於醫療材料,例如無菌的手術器械外包裝或是包紮傷口的繃帶,以減少病人感染風險並強化公共衛生。   相關研究發表於< ACS Nano>
2018/05/04
甜度、口感、質地、顏色、尺寸、品種、栽種者、栽種地、生長環境是否優良、如何催熟、運輸時間以及營養價值多少等,究竟怎樣的番茄才是消費者想要的?一篇公開在農業未來(Future of Agriculture)網站的評論文章中,作者提出了未來農業區塊鏈(Blockchain)可能的雛形。過去科學家們叫針對農產品本身進行改良,透過強化作物的遺傳特性以符合鮮食、烹調或加工需求;若農產品的生產能夠配合大數據及區域經濟模式之應用,將能為農業帶來新一波革命。   文章中以番茄為例,農夫可以透過不同感測器對作物生長狀況(如溫度、濕度、光照等)進行監測,資料輸入至雲端後能成為每一顆番茄的生產履歷;而餐館、零售商或蔬果供應商則將消費者採買數據連結到番茄種植數據庫,使農夫更能準確依品種、條件等市場需求種植,平衡供需關係。美國新創公司Ripe.io就是透過這樣的服務,收集特定種植者的生產數據,並分享訊息給餐館或消費者。   雖然一般的交換資訊只存在於訊息雙方,並不需要用到區塊鏈規模,但面對多方消費者及多方供應商的情況,區塊鏈應用優勢就會浮現,搭配自動化感測器將數據隨時上傳到雲端,也能減少生產者不斷紀錄的麻煩。   此外,作者於另一評論提到區塊鏈在農業的五個潛在角色: (1) 提高食品安全:提高供應鏈透明度,間接淘汰條件不良之供應商,也可以在發生食品安全事件時快速查明問題來源。 (2) 建立可追溯性:不論消費者於何處購買商品,均能了解商品來源與加工運輸過程,防止仿冒產品充斥市面。 (3) 降低交易成本:透過區塊鏈資訊的幫助,創建更透明和高效率的供應鏈,集中原來散落四方的貿易能量。 (4) 開放新市場:資訊透明化之後,就不需要額外評估各方的可信度和執行能力,也不需要中間人和額外的保證金,直接建立信任和責任制,有效打開陌生市場。 (5) 便利後勤調控:農產品的保質期通常很短,透過建立在區塊鏈上智慧物流系統,就能提供更有效率的運輸與分配貨品。【延伸閱讀】世界自然基金會推出區塊鏈平台-OpenSC以增進供應鏈透明度   然而,距離區塊鏈真正應用於農業區域經濟還有一段路要走,不僅需討論農場內部的優化流程及數據處理責任,還要取得明確的監管共識;此外,系統整合也需要花費的人力與物力,因此需要再經過更多的評估,審慎進行為宜。
2018/05/03
過去30年來,英國境內蜜蜂及其授粉花種的生物多樣性雙雙銳減,除了過度使用農藥而損害蜂群健康外,商業化大量種植單一作物可能也是蜂群數量原因之一。過往研究認為,蜜蜂具有將新鮮食物帶回巢中儲存與使用的特性,所以蜜源植物上所攜帶之微生物也會隨著花蜜與花粉一併進入蜂巢與蜜蜂體內;例如雙歧桿菌和乳酸桿菌等有益微生物能減緩蜂花粉(bee bread)腐敗,若是蜜源植物多樣性不足,則可能造成蜜蜂無法獲得足夠的有益微生物,進而影響蜂群健康與當地適應力。   地理位置、氣候環境與土地利用變化始終影響著當地的生物多樣性,而微生物則扮演著穩定與調控生態系的角色,因此一地的微生物相變化會影響當地其他大型中生物對環境的適應性或耐受性。本次英國蘭開斯特大學(Lancaster University)的環境中心(Lancaster Environment Centre)與生態水文中心(Centre for Ecology and Hydrology)針對蜂花粉(bee bread)中的微生物相進行研究。蜂花粉是蜜蜂採蜜時帶回的花粉團,在蜂巢內儲藏和發酵後的產物,所含的化學成分與微生物相會因蜜源不同而有所變化。研究人員從英格蘭西北部29個蜂巢中採集472個蜂花粉樣本,利用變性梯度凝膠電泳(denaturing gradient gel electrophoresis)與 Illumina MiSeq DNA進行核酸定序,發現位於城市附近蜂巢取得的樣本顯現出較低的生物多樣性。由於蜂花粉為蜜蜂重要的營養源,故內部的微生物相與營養成分會直接影響蜂群健康,因此作者認為當地植物組成與蜜蜂的環境適應性具有間接關聯性。【延伸閱讀】研究發現植物所散發的特定化學防禦訊號可誘發斜紋夜蛾的免疫反應   相關研究發表於<Ecology and Evolution>
2018/05/02
近年來資訊技術發展快速,無論是資料收集、儲存與分析資訊的方式均有重大突破,目前全球98%以上的信息都是以數位格式儲存的,除了搭配網路及各項軟硬體開發應用,機器自學系統的培養也是另一個熱門的開發項目。而IT技術於農業及食品業中應用廣泛,包含環境監控、即時圖像、遠端操控等,隨著智慧管理的觀念逐漸普及,如何良好使用大數據與兼顧農民利益將是未來主要議題。   由28個生產商、國際集團、供應鏈公司、環保組織和環保組織兩黨組成的聯合會聯署寄信給美國參議院農業委員會主席Pat Roberts與眾議院議員Debbie Stabenow,希望他們支持2018年農業數據法案〈Agriculture Data Act of 2018 (S. 2487)〉。該法案將加強美國農業部對生產數據的管理,除了便於研究各項農業措施之影響,也能同時兼顧農民的隱私。【延伸閱讀】歐盟推動大數據技術整合幫助提升生物經濟價值   為了提高農業生產者的利潤、保護環境與降低生產風險,故須保障適當的數據收集、審查與分析行為。S. 2487指示美國農業部創設安全數據庫與保密程序,除保障現有資訊外也同時保護個別農場生產者的機密資訊,禁止出售個別生產者數據,以提高生產者自願提供農業數據的機會。此外,也推動優化各農業相關部門的橫向資訊互通,整合作物產量、土壤健康與保護措施等其他的外部數據來源,並允許研究者公開關於土壤健康,產量變化和風險之間的重要總數據,這些資訊也可作為學術研究、技術援助、未來經濟規劃等依據。

網站導覽
活動資訊
訂閱RSS
電子報訂閱