MENU iconMENU
主題專區
主題專區
2018/01/03
Sr50對包含Ug99的所有小麥銹病菌株皆有抗性,為找出相應的AvrSr50基因與變異特性,研究人員收集了不同來源菌株的序列數據,確定了病原AvrSr50基因組中容易發生變異的區域,進而表現出對Sr50的抗性。此研究成果顯示了植物的免疫系統如何直接辨識特定的真菌蛋白質。
2017/12/29
有鑑於致病菌對抗生素的抗藥性(antimicrobial resistance;AMR)日益嚴重,全球衛生領導人呼籲減少農業和人類醫療的抗生素使用。   諾丁漢大學(The University of Nottingham)的獸醫學院於Veterinary Record的報告中研究了英國特定乳牛場的整年度抗生素藥物使用狀況,其中取了358個農場場作為調查樣本,內含乳牛總數約為81,000頭,佔全國乳牛總數的7%。調查發現,大部分的抗生素為注射用,並且佔所有使用(或出售)給農場之抗生素總量的78%。此外,治療皮膚炎的牛足浴使用了大量的抗生素,是目前需要減少的目標。   近年來預防勝於治療的觀念逐漸興起,因此英國乳牛場的抗生素使用持續下降。為了協助評估抗生素使用狀況,研究人員開發了一種新的線上工具- AMU Calculator,能記錄每日用戶使用的藥品與抗生素,並將輸入數值從施用毫克/每公斤個體數量(population corrected unit;PCU)轉換成統一的固定劑量單位DDD(defined daily dose)或DCD(defined course dose),幫助獸醫或農民紀錄長期藥物用量之趨勢與不同品種、年齡、性別等族群間的比較。【延伸閱讀】利用地理資訊系統整合日本全國土壤肥力資訊   此類新型監測工具可協助建立不同牲畜使用抗生素的基準與監測比較不同地區間藥物施用的情況,提升藥物利用的精準性,減緩抗藥性的產生。目前已有50位獸醫開始使用AMU Calculator,但要建立適用於全國的用藥基準還需要再收集更多資料,才能幫助農民和獸醫找出更有效的藥物治療方案。   此工具可於AHDB Dairy免費下載,網址如下:https://dairy.ahdb.org.uk/resources-library/technical-information/health-welfare/amu-calculator/#.WkGwFN-WaUk
2017/12/28
人體對某些食物會產生不良反應,包含搔癢、腹瀉、水腫等輕重不一的自體免疫症狀,因此需嚴格避免接觸過敏原。然而考量現今社會採買食物與在外用餐狀況,欲完全避免問題食物非常困難。故哈佛醫學院與麻省總醫院合作,開發了鑰匙圈大小的簡易檢測器iEAT (integrated exogeneous antigen testing),由袖珍型檢測器、電極片和一次性試劑盒等三個部分構成。其中檢測器可連接個人智慧型手機,可於現場檢測食物中的過敏原並上傳數據到雲端。   首先在試管中溶解一小塊食物,讓磁珠與過敏原結合,之後放一滴混合物在小電極片上並插入檢測器,10分鐘內iEAT可連通至用戶的智慧型手機,顯示過敏原是否存在與其濃度。此外,配合手機應用程式,用戶能夠編輯與儲存在不同的餐廳及包裝食物中檢測到的各種過敏原資訊;隨著程式中累積的資料量增加,會逐漸形成獨一無二的個人記錄,透過與他人的資訊分享,將可逐步篩選出較不引發過敏的餐廳或食物。【延伸閱讀】盈利預測系統可能可以協助降低印度農民因負債而導致自殺的狀況   該系統具有高靈敏度,可檢測出比美國聯邦標準低200倍的麩質濃度。除了協助消費者掌控個人的食品安全,該設備也可用於檢測標籤標示不清的食品,有助於醫生、食品行業和監管機構等加強食安管理。後續還能依需求調整設備以偵測其他過敏原或物質,幫助大腸桿菌或沙門氏菌等汙染物來源追蹤。   相關研究發表於2017年8月的ACS Nano
2017/12/18
進行農場管理時,動物體重是日常健康監測的重要指標,但受到人力與時間限制,無法於短時間內重複進行個別動物的測量。故法國正努力研發更便宜、更方便的新型設備取代老式的秤重籠,以便進行這些例行性的動物體重測量。   在法國Romillé的IFIP實驗站與Advansee公司合作開發了一個原型裝置,該裝置由位於畜舍建築走廊的支架組成,其約長3公尺,寬1.80公尺,高1.80公尺,並於同一平面安裝5個Kinect相機,其安裝在中心處1個以及門廊角落4個,中心處的相機將會在最佳時刻控制所有相機同時進行拍攝,以完整地呈現動物影像,同時Kinect相機每秒可拍攝30張照片,並利用RX成像儀測量50頭豬(10-110公斤)的體積大小,且所有數據會傳送到電腦中進行計算,並將動物的體積轉化為體重。其目標是增加三維秤重之精確度,持續藉由改善演算法以減少體積估計值與實際測量結果之間的差距,以確切得知動物體重,因此目前正在嘗試將重量誤差縮小到5%內。【延伸閱讀】自動化3D攝影幫助及早發現豬咬尾   該計畫預計於2018年初結束,希望在優化3D測量準確性的同時也能降低成本,期望未來可幫助屠宰前的體重等級分類,或是結合動物身上的RFID(Radio Frequency Identification)晶片識別,並存檔於電腦之中進行其他應用,協助業者定期追蹤個別動物的重量變化與生長曲線。
2017/12/11
每年家禽業約產生600噸羽毛副產物,若能將其再利用可增加收益並減少環境汙染。其中一種再利用方式是作為飼料添加劑使用,由於羽毛主成分為蛋白質,添加於動物飼料中可補充所需蛋白質並降低飼料成本。但羽毛所含蛋白質中80-90%為角蛋白,角蛋白含有大量雙硫鍵與疏水性,不易被一般的蛋白質水解酵素分解;為了能讓羽毛中的蛋白可被添加到飼料中使用,需要先用化學或物理方式促進角蛋白水解。目前的處理方式是利用高溫蒸氣與化學處理,使得羽毛較容易被分解,但成本昂貴且會耗損部分必需胺基酸,因此巴西研究了利用微生物改善雞羽毛水解產物的技術,並對其所做的副產品作為飼料進行評估。   本研究的目的是使用枯草芽孢桿菌(Bacillus subtilis AMR)幫助雞羽毛分解,並評估該分解產物與擠壓生產之玉米粉混合物作為飼料的有效性。其中一組試驗為添加B. subtilis AMR到含有0.1g 酵母萃取物的100mL羽毛培養基,並且測試了數種緩衝液,包含檸檬酸緩衝液、磷酸緩衝液與甘胺酸緩衝液,將混和物培養8天;另外一組試驗為混和羽毛與磷酸緩衝液6天,另額外添加葡萄糖、蔗糖、玉米漿、酪蛋白與酵母萃取物,此兩組試驗每天進行發酵混和物樣本分析,檢查微生物生長、羽毛狀況、角蛋白分解活性與可溶性蛋白質含量。之後再添加B. subtilis AMR到1L的羽毛培養基中培養6天,使羽毛水解,再混和1公斤玉米粉與260毫升的水解羽毛擠出成形。【延伸閱讀】提升白鮭廢棄物利用價值的新加工系統   實驗發現在pH 8.0的環境下酵素活性和可溶性蛋白質的產量最高,而在羽毛培養基中加入蔗糖(0.5g / L)可使B. subtilis AMR的角蛋白溶解活性增加了1.3倍,是最佳的添加物。此外分析擠出物的物理與化學性質,顯示加入分解後的羽毛提高了灰分和總氮含量,並且可檢測到所有必需氨基酸,表示發酵過的羽毛蛋白質被分解成較小的分子,能促進生物利用度,而這些結果皆顯示此類羽毛水解產物具有作為動物飼料補充劑的潛在用途。
2017/12/06
養豬等畜牧業於生產過程中會產生大量含有氨與磷酸鹽的有機質廢水,造成周圍環境汙染與惡臭;常見的清潔方式為將廢物集中於特定區域內,利用微生物分解有機物與曝氣處理,製程有機堆肥。然而日本土地資源有限,養豬場集中的地區產生之有機廢棄物已超過當地可利用土地之負荷,因此需要更好的處理方法以減少人力與土地消耗。   沖繩科學技術大學院大學(Okinawa Institute of Science and Technology Graduate University, OIST)使用了一種微生物燃料電池(Microbial fuel cells, MFCs),能幫助類似地點處理廢水問題,減少當地的廢棄物負擔。目前研究人員已開發出可長時間運行且不會故障的MFC,他們在Scientifica上發表的論文中表示,在使用MFC以前需要先培養或接種可進行分解功能的細菌,因此可以將含有細菌之汙泥鏟到MFC的陽極,此部分的細菌大量繁殖後可用於廢水處理。若陽極事先與汙泥中特定廢棄物接觸則MFC處理廢水的效果更好,且使用養豬場汙泥處理廢水的效果優於啤酒廠汙泥。【延伸閱讀】快速且可靠的微生物污染檢測技術   此電池開發的理想目標為:能夠長期使用且不需額外花心力維持運轉。故除了養豬場外,該單位還在其他地區的設置MFC做為測試,其中加利福尼亞的酒廠能用處理過的廢水進行灌溉,而沖繩的Awamori (泡盛)蒸餾廠已運行五年了,廢水處理後可達安全排放到下水道的程度。目前此MFC處理有機物的效率高達90%,但其中產生的磷酸鹽及氨含量豐富,這些營養物質釋放到水中容易造成優養化現象;故沖繩的畜牧研究中心(Okinawa Prefectural Livestock and Grassland Research Center)及環境科學中心(Okinawa Environment Science Center)在當地政府的資助下開發相關營養物質的解決方案,也許可作為有潛力的農業副產物肥料。Goryanin教授表示,廢水處理的最終目標是達到幫助無乾淨水源的國家獲得乾淨的飲用水,緩解全球的廢水負擔。
2017/11/29
澳洲阿德萊德大學(University of Adelaide)與CSIRO 農業和食品部研究合作發現,若土壤環境鹽分含量過高會導致葡萄產量下降,損害植株健康,並使得葡萄含鈉量過高導致釀酒口感不佳,故含鈉量高之葡萄不適合葡萄酒釀造生產,且會降低葡萄園經營者的獲益。而長期以來葡萄酒相關行業因為鹽分造成的損失每年花費超過10億美元,故該研究團隊藉由探討不同植株內鹽分含量差異的原因可有助於選出較適合釀酒的葡萄,以減少經濟損失。   低濃度鹽份葡萄可增進葡萄酒的風味,通過比較不同葡萄植株的基因表現量,其鎖定了根部表現鈉排除之特定基因,此基因可限制了鈉離子(Na+)傳送到葡萄果實及葉子,傳統上美國與歐洲均有其使用之釀酒葡萄之砧木,此一發現將可用來開發新的品種選育之遺傳選拔與基因標記,於苗期時就可以篩選較適用的葡萄基因型,減少田間選擇的時間與成本,並藉由澳洲的釀酒葡萄育種選拔計畫,將不同葡萄株中的有益特性進行結合,以作為澳洲當地發展之葡萄酒行業所用之釀酒葡萄,支持當地的釀酒行業發展與推廣。【延伸閱讀】專家們表示:新興植物育種技術將能解決未來糧食安全問題
2017/11/24
隨著捕撈、航運、保存技術的進步,漁業供應鏈已逐漸變得龐大,相關公司和銷售店家的產品越來越受人為環境和供應鏈影響,但隨著供應鏈的壯大,過度捕撈和漁工人權侵害的問題也愈加嚴重。根據十月份發布的Greenpeace Sea of Distress report報導,自20世紀末以來全球漁獲量持續下降,顯示海洋生態系統正遭受破壞,全球三分之一的漁業資源已經枯竭,且美國國務院已在50多個國家的漁船或漁加工設施上發現了遭受非法勞動和販賣的人員。   除了上述因素,漁產品的可追溯性資料也日益重要,以美國為例,北美超過三分之一的海產被貼錯標籤,且高達三分之一的野生捕撈海產屬於非法進口產品,而這些問題促使了數據分析、影像、監控等全球性的前瞻技術有了共同合作發展機會,並協助傳統漁產業進行轉型。   美國一個非營利組織Fish 2.0其積極推動投資人和漁業相關企業之連結,致力於發展漁業永續經營,並藉由舉辦論壇與獎勵比賽中探討漁業之新技術,每個新興企業所投入之研發涵蓋了漁業市場中不同部分,例如: Seatech:建立可提供公司、政府與非政府組織有關自然資源的數據資料庫,確保其漁產品具有正確之來源標記,以告知消費者漁產品的合法性,同時鞏固合法漁企業的市場。 ColomboSky:創設海水養殖監測技術,利用衛星圖像進行水質監測,可以提前預防大量藻類或水母所產生的威脅,減少海水養殖的損失。 ThisFish:研發追蹤軟體協助世界各地之漁業企業,記錄其供應鏈數據,以提高透明化程度和業務效率。 SmartCatch:運用區塊鏈概念到漁業生產運銷過程中,積極鼓勵漁民可透過支付少量金額之方式(micropayments),來交換所需要之補獲資料,以減少誤捕其他海洋生物的機會。【延伸閱讀】日本農林水產省與經濟產業省跨部會合作科技技術創新   目前已有許多大型漁業業者投入漁業科技發展及來源可追溯性之新興科技開發當中,證明這已變成世界性的重要議題,其不僅只是為了消費者之漁產品安全、改善工人勞動環境與瞭解生態系統環境健康狀況而已,更是積極將傳統漁產業導向真正的友善環境與永續發展之目標。
2017/11/22
現今市場上充斥許多的一次性商品與包裝材料,由於其中所含的塑膠材質不易分解而容易造成海洋環境汙染,因此生產可分解的環保材質以取代塑膠製品刻不容緩。其中英國的艾倫˙麥克阿瑟基金會(Ellen MacArthur Foundation) 與OpenIDEO合作,舉辦比賽以鼓勵替代塑膠的創新產品設計。   因印尼存在全球第二大的海洋塑膠問題,再加上印尼是由海島組成的國家,海洋資源豐富,一公頃海洋一年可生產40噸海藻(乾重),在培養過程中可吸收20.7噸的二氧化碳,減緩溫室效應。而海藻容易取得且含有豐富的多醣,故印尼公司Evoware開發出一種新的海藻包裝產品,該材料經過乾燥擠壓,製造過程不須添加其他化學產品,外層光滑內部粗糙,能夠保存至少兩年,可應用於茶、泡麵、穀片等乾燥食品的包裝,隨著倒入的溫熱液體而溶解,或是用於包裝肥皂、衛生紙等,之後可以生物降解的方式回歸土地。【延伸閱讀】研究團隊處理全球廢棄物時發展出循環經濟的連結   然而此種新興材料目前的生產價格比傳統塑膠製品昂貴,離真正取代一次性塑膠商品仍有一段距離,目前仍在進行改良與測試,以期可用於半液體及液體食材,並降低製造成本以達到普及化使用。雖然創新的綠色設計提供塑膠製品的替代方案,但少數企業家無法順利推動使用轉型,需要倚靠大企業、投資者與政府承諾以推行環保材料與塑膠減量(Reduction)、重複使用(Reuse)與回收(Recycle)的塑膠循環經濟合作,以達成環境友善的終極目標。
2017/11/15
長久以來,建造城市中的道路與高樓會犧牲鄉村的可耕地面積,對區域性傳統農業產生不良影響。然而,世界上有一半以上的人口聚集在城市附近,對於都市人口而言,周邊的傳統農業已無法維持基本生存所需,需要透過更遠的距離取得食物,也付出較多的運輸和儲藏成本。   近年來環保與健康意識興起,在空間、土地有限的情況下,高科技、大規模管理的水耕栽培都市農業是未來趨勢之一;使用更小的土地面積,配合室內微氣候與光照控制以創造單位面積更高的產量,可提供周邊城市更新鮮的農產品。美國Planty公司宣布,將會在西雅圖南方設立一個大規模的水耕式垂直式農場,以垂直種植的形式搭配LED光照與室內氣候控制設施,再加上多個紅外線相機與感應器收集數據,隨時分析與控制最適合作物生長的環境,同時能夠減少轉基因作物、除草劑和農藥的使用;比起傳統農業的生產更具效率,且能供給更多新鮮而健康的食物給周邊城市。【延伸閱讀】環控農業或許能解決區域性糧食短缺的問題   對現今環境而言,這類對土地傷害較小,並更具永續性的農業發展是必要的,如何能更加經濟且友善環境的生產糧食則仍需靠更多努力與技術。水耕農業是一種都市農業的新方向,能夠結合高產量與減少農藥和長途運輸對環境的影響。
2017/11/13
食品安全是全球性的問題,品牌行銷和管理可以建立消費者對業者的信任,且廠商對於供應鏈的責任與透明化更是抓住消費者信心的重點。一般而言,除非食安產生嚴重漏洞,否則消費者比較不會考量到食品安全問題。但如今社會通訊發達,在多通路的世界中,消費者於可於多種管道發聲,若是因食安問題使消費者不信任品牌,就容易大量流失客群。   由於時間緊迫,品牌對食安問題迅速反應相當重要。然而,食品從生產到上餐桌前的每個流程都具有風險;除了大型供應商以外,大部分廠商無法完全追蹤製造流程的每一塊區域,此時已在數字貨幣方面大量運用之區塊鏈 (blockchain) 概念,就可以用來支援食品安全的控管。 什麼是區塊鏈 (blockchain)   人們為物件創立一組紀錄,需要存取備份資料的公司或個人擁有安全的個人數位密碼,任何在備份更動或是交易都會被留存。當其中一個備份的資料被更新時,其他人手中的資料也會跟著被更新,這種分散式記帳技術系統可以使得食品供應鏈中的各個廠商去追蹤任何一步,直到送達消費者手中,且原始數據永遠不會受到破壞或遺失。   由於區塊鏈可提供所有相同的資訊給同一項目的所有參與者,所以任何有關生產、製造、運送到商店貯存的紀錄都必須更新於副本中並自動送到所有參與者手中。一旦有任何部分超出規定,有瑕疵的貨品就可以及時被移除,減少消費者食用到問題食品的威脅。若是有消費者提出生產製造的相關問題,則更容易去追蹤同一批貨物的狀況。 建立食品安全信任的方法-數據透明   區塊鏈之特色能使供應鏈全部數據透明化,挑戰供應鏈內所有參與者面臨的控管義務和產品安全,以建立合夥人和消費者的信賴。【延伸閱讀】標籤統一化與數位化能強化可追溯性和安全性 中國與美國運用區塊鍊的食品安全測試減少風險   為了改善爆炸性人口的食安問題,中國已投資了相當可觀的時間和金錢,但中國消費者對食品安全的信任極低,區塊鏈能幫忙建立大規模市場對食品的信任度,而雖然美國消費者對於品牌和食品安全之信任度高,但當食安問題發生時,亦會快速地經由社群和數位媒體散播,一件大規模汙染的事件或是產品回收處理不當,都會影響對消費者回購商品和購買同品牌商品的意願,此時區塊鏈的價值將在於能協助供應端清除風險和資料可追蹤性。
2017/11/10
在現代化的科技社會,發達的網際網路提供了一種新的、開放的、快速的資訊交流與溝通模式,同時將此技術應用於農業中,農民可利用網路迅速的分享經驗,達到技術互助與資源共享的效果,進而促使現今的全球農業朝向精緻化與大數據發展。當使用土地感知器、物聯網、無人機和平板等設備,立即上傳各種資料到雲端後經過整理,能夠化零為整,建立大範圍內的區域土地狀況資料庫,並藉由雲端技術將人工智慧結合農地管理,可使農戶得到即時農地資訊,個體農戶的智慧與經驗法則也可以利用網路分享給其他人,更能增進農地工作效率。   以印度而言,雖然過往其農業價值鏈低落且分散,但因智慧型手機和網路在農村中的興起,其通訊系統在過去兩年已有了驚人的轉變。憑藉網路生態系統結合農業生產組織經營之管理系統(farm ERP)、數據科學、精準農業和農場AI系統等技術,積極推動共享平台之應用,而結合後的生態系統經由串連許多硬體裝置,包括物聯網連結之農場感應器、實驗室的土壤測試數據、無人機的多光譜成像儀器以及智慧型手機所收集之數據和圖像,可將數據從物理空間全面地映射到網際空間並建構出立體圖形,當個體農戶加入群體之共享平台後,將可節省許多資源、時間、設備等投資成本。【延伸閱讀】美國開發智慧型農業專用組合貨櫃解決糧食短缺困境   印度作為小農國家,在經過工業革命1.0(蒸汽機)、2.0(內燃機)、3.0(網際網路)等時期,皆無法實行於農業改革,這是由於這些技術之推動需要工廠或大型農場等大規模設施才得以實施;而工業革命4.0則沒有規模上的限制,其關鍵在於利用網際網路連接遠端設備,並導入AI與雲端之技術支援,促成新的技術平台產生;將這樣的概念應用於農業,可協助小型農戶達到集體資源共享與生產的效果,使其在某種程度可達到仿效西方國家大型智慧農場之概念,並將產量提高了30-50%,形成與大型農場相等之經濟規模,除了使產量提升外,更能夠讓農產品有更好的市場價格。   現在是服務經濟的時代,農業4.0開闢了一系列新工作機會的大門,如農業數據科學家、機器學習設計師、農場分析師以及技術支持、設備操作、感測器和測量等現場工作人員,將「農場管理即時服務」全面的擴展到作物選擇、風險管理、供需計劃以及智能供應鏈,以獲得最大化提高投資收益,同時透過集中管理而擴大經濟規模,促使生產力躍進,將小型農業轉變為智慧型農業。

網站導覽
活動資訊
訂閱RSS
電子報訂閱