MENU iconMENU
農糧領域
農糧領域
2018/12/04
由於世界人口增加、耕地面積減少、氣候變遷加劇與自然資源有限等原因,向外太空發展農業似乎是一種可行的想法;然而,植物已在地球上經過長期演化,早已適應地球的特殊環境。太空中的重力特性和土壤營養皆與地球上有所不同,欲發展農業則需透過科技技術尋求解決之道。   菌根是一種真菌與植物互利共生的構造,真菌的菌絲比植物的根更細,可幫助植物吸收水分與礦物質,而植物則可供給真菌所需的醣類和脂質,在營養缺乏的環境中,這樣的構造更能幫助植株生長與促進健康。獨腳金內酯(strigolactone, SL)是一種常見的植物激素,在調節植物根與芽之萌發與刺激菌根中菌絲生長具有重要角色。瑞士蘇黎世大學(Universität Zürich)則利用此一特性,測試真菌Rhizophagus irregularis在模擬微重力環境下,於茄科模式植物—矮牽牛(Petunia hybrid)產生的菌根化現象。   由於真菌體內具有重力感受器,因此微重力條件對菌絲發育具有負面影響。而SL生合成和運輸會受到營養缺乏的條件誘導,而植物中的PDR1基因能夠改變的SL運輸效率。透過模擬得知,在微重力環境下,PDR1基因過度表現的矮牽牛仍然可生成較多的菌根。顯示藉由調控基因表現而誘導植物激素產生,並進一步引導菌根生成,或許有利於茄科植物在太空站或其他星球上生長;未來進行植物太空研究時,或可選擇生成較多SL的植物培養與耕作。【延伸閱讀】農桿菌之應用協助人們了解植物繁衍背後之遺傳機制    相關研究發表於< Nature Microgravity >
2018/12/03
行政院環境保護署將廢照明光源公告為回收項目,廢照明光源因含資源物質(玻璃、塑膠及金屬)以及微量的汞,家庭用量大,宜統一回收再利用處理。其中資源物質中含有稀土元素,如釔、銪、鑭等作為燈管中的螢光劑。由於稀土元素因市場供需問題,加上主要產區來自政治敏感區,如何供應穩定的稀土原物料及平穩市場價格成為主要關鍵,若能有效回收廢棄燈管內的稀土元素,延長元素使用週期並減少開採原物料造成的污染,將能達到減廢及資源再利用的目的,而這方面的關鍵技術是將是人們發展的目標之一。雖然現今已存在回收廢照明光源內稀土元素的技術,但處理過程使用大量的酸性萃取物,產生大量的污染,且處理價格所費不貲,因此距離商業應用仍有不小的差距   有鑒於此,日本金澤大學團隊致力研發較為乾淨的處理方法,為廢棄螢光燈管處理及稀土元素的回收增添新的里程碑。有別於傳統單純使用酸性溶液萃取物溶出廢燈管中的稀土元素,金澤大學團隊在處理過程中加入先前就曾被用在處理毒性固型廢棄物方面的螯合劑,使得回收廢棄螢光燈管的過程中不需耗費大量高污染的酸性溶液,即可以少量的酸性溶液螯合出稀土元素。研究也發現在增加反應溫度的同時,回收率也能有顯著的提升。此外研究團隊更嘗試在反應介質中加入球狀研磨物質(Planetary ball-milling),透過球狀研磨物質與反應物介面的物理交互作用,增加反應介面的表面積、提升反應速率,藉此在短時間內提升回收率。透過新的回收方法,研究團隊已能將稀土元素的回收率由傳統53%提高至84%,並減少傳統回收法造成的大量污染。【延伸閱讀】促進永續性之纖維素奈米纖維製造方法   雖然已有較乾淨的廢棄物處理方法,但研究團隊仍試圖找出最佳的反應溫度、酸鹼值、研磨速度、球狀研磨物質大小等可能的重要反應參數,繼續朝向零污染、永續科技發展的方向前進。該研究已於今年刊登在<Waste management>中。
2018/11/29
全球約有13,000多種外來植物在非原生棲地生長,某些外來種(alien species)能適應當地原生環境成為歸化種(naturalized species),與原棲地生存的原生種(或稱本地種,native species)共享同一棲地,然而某些外來種則對當地原生種造成威脅,成為入侵種(invasive species),可能使原生種滅絕。以生物防治的角度,若了解外來種要進一步成為入侵種所需具備的形態特徵,將有助於有關單位監控入侵生物,確保當地生物多樣性,這對林業經營管理及農業生產安全具有一定程度的貢獻。   捷克馬薩里克大學(Masaryk University)及美國佛蒙特大學(University of Vermont)跨國研究團隊研究中歐6類不同棲地,每類型的棲地分別採集原生及非原生植物物種,將這些物種分為原生種、歸化種(naturalized species)及入侵種,共計採集1855個物種,最後量測個體的形態特徵,記錄植物葉表面積、株高及種子重共3種性狀,並分析三種類型的植物在不同棲地間是否具類似的特徵。研究結果發現,入侵種的株高特徵在6類棲地環境皆呈現顯著差異,外來種的株高在6類不同棲地中皆高於原生種及歸化種,這顯示植物生長高度可能是決定外來種能否成為入侵種的主要特徵之一,研究團隊推測這樣的現象可能是因高植株性狀令外來種有機會獲得更充裕的光線,從而競爭過當地的原生種。研究認為外來種與原生種皆具備適應棲地所需的特殊性狀,然而一旦外來種較原生種額外具備某些具優勢的性狀,將能利用優勢性狀競爭過原生種,進而藉機成為當地的入侵種甚至優勢種。【延伸閱讀】翻轉邊際農地用途再造人與生態共生共榮   馬薩里克大學及佛蒙特大學在入侵生物學的研究發現,為森林生態植物多樣性及農業生物防治提供重要的資訊。該研究已於今年11月發表至<Nature Communications>。
2018/11/23
全美國地區的農業用水占全國水資源利用的80%,其中大多用於灌溉作物方面。近年來由於極端氣候發生次數頻繁,各地不定時發生短時間強降雨與長時間乾旱的情況,農業灌溉恐面臨缺水危機。除改善儲水設施、發展以大數據為主的極端氣候預警系統、開發特殊自動化灌溉設施外,透過育種技術,以傳統雜交或分子選育,改良作物性狀、培育耐極端氣候的品系(種),皆為研究的方向。許多研究顯示,植物水分利用效率(water-use efficiency, WUE)的高低,是決定該物種是否耐旱的指標之一,該指標可反映植物進行光合作用時,固碳效率及反應期間水分消耗多寡的關係,效率高意味著植物僅需消耗少量水分,便可固定大量光合作用產物;一般而言,生長在乾旱地區的作物與降雨充沛地區的作物相比,擁有較高的水分利用效率,而C4植物則較C3植物高。藉由分析不同品系間水分利用效率的高低,將有助於人們在未來培育新品種。   美國現今約有9,000萬畝的農地,以粗放經營的方式大面積種植經濟作物玉米(Zea mays),整體用水量相當可觀。玉米是原產於美洲的C4植物,擁有長期人為馴化史,美國有多種品系,不同品系間的水分利用效率皆有差異,若能先建立各品系的水利用效率特徵,將有助於後續找出對應之遺傳性狀,做為未來育種之用。   傳統分析水分利用效率的方式係透過儀器量測葉片上水分及二氧化碳進出氣孔的多寡得知,但由於該方法須長期監控,且推廣至大規模應用不符經濟效益,因此美國伊利諾大學作物科學系(Department of Crop Sciences, University of Illinois)的研究團隊以測量穩定碳同位素(stable carbon isotope),分析葉片中穩定碳同位素的含量,藉以推論不同品系間的水分利用效率。碳元素在自然界中具有不同中子數的型態,多數以較輕的碳-12形式存在,而少數以較重的碳-13形式存在。當植物吸收自然界中不同碳元素組成的二氧化碳進行光合作用時,便將各個同位素形式的碳固定在植物體內。研究藉由植物體內碳-12與碳-13的比例,便可推估各個物種或品系的水分利用效率。【延伸閱讀】以近紅外光譜儀即時監測牧草之營養狀態   研究團隊將玉米的36種自交系(inbred line)分別以不同生長季、多處溫室及田野等條件中進行試驗,最後測量其穩定碳同位素比例。研究發現穩定碳同位素的性狀是可遺傳,在不同試驗環境下,其特徵趨勢相似。研究成果初步證實,玉米的水分利用效率特徵是可遺傳的,這項發現提供育種者新的選育方向。研究團隊預計在未來找出與水分利用效率相關的基因,盼為玉米品種改良做出貢獻。   該研究由美國農業部國家農業及食物研究院(National Institute of Food and Agriculture, USDA)資助,相關研究成果已於今年10月發表在<The plant journal>。
2018/11/22
邊際農地(marginal farmland)係指農地周圍不適栽種作物的土地,這些土地可能因地勢較低不利排水,或因土壤特性不同,使得肥料或水分易流失等,使得肥力較差不適作為栽植之用。我國農業委員會農地資源劃分則將邊際農地定義為:「自然及人文條件不適合做生產使用的農地,包括地層下陷地區、海岸地區及坡地地區,但這些地區可能具有較佳的其他功能條件。」不論如何界定,邊際農地因土質、肥力及經濟等多方因素,不適合發展農用,但邊際土地在適當開發下仍可作為其他土地利用。   美國能源部阿岡國家實驗室(Argonne National Laboratory)自2011年起,研究具經濟效益的生質作物(biofuel crop),其中灌木柳(shrub willow, Salix miyabeana)及柳枝稷(switchgrass),是提煉生質燃料的重要研究物種。研究初步發現灌木柳及柳枝能適應砂質土環境、減緩土壤受侵蝕,並吸收鄰近農業施用過剩的肥料,在穩定水土保持之餘也能防止過多的肥料流溢到鄰近地區的土地及河川中。若過量的肥料流到周邊的水域甚至排放到下游海域,將因水域優養化造成大規模的藻華現象,藻華將使鄰近海域溶氧量下降並產生大量的毒素,對區域環境造成重大危害。為此,阿岡國家實驗室團隊在2013年起,選定6.5公頃的玉米田或大豆田進行田間試驗,以地理資訊系統及土壤肥力分析比對後,選出農地中生產力相對較低的區域,並在這些區域種植灌木柳,並觀察灌木柳是否能有效解決農地肥料隨地下水流到河川等問題。【延伸閱讀】計算歐洲致命橄欖樹病原體對經濟的影響   在長期監測土質、地下水及觀測地面植被的結果發現,因灌木柳的根系深達地下水層,透過較深的根系能有效地攔截及吸收肥料流溢至地下水中過多的氮肥。除此之外,研究同時也觀察到農地周圍的生物多樣性提高及溫室氣體排放量下降等趨勢,顯示種植灌木柳除提供能源效益外,在環境友善及環境保護方面有定的效益。阿岡國家實驗室的研究成果顯示,若能於邊際農地推廣種植深根系的灌木柳,將有助於發展成為生產、生活及生態平衡的三生共榮,利於在地永續發展。該研究成果已於2018年美國地質學會大會發表。   除國外推廣種植生質作物的方法外,我有關政府部門近期也在逐步規劃邊際農地做為推廣太陽綠能種電之用,顯示邊際農地目前在國內外皆由早期無人開墾的荒蕪地轉變為生生不息的自然寶地。
2018/11/20
Teapasar是新加坡的是一個初創的線上茶葉市集,於2018年9月推出,其中運用創新思維模式的兩種服務工具-ProfilePrint和TasteMap,可透過科學方式敘述茶葉特性及客戶偏好,並提供最接近客戶需求的茶葉品項。   ProfilePrint利用氣體色譜法與質譜儀(Gas chromatography–mass spectrometry, GC/MS)創造了茶的代謝物指紋圖譜,可針對茶樣本的來源、風土、栽培品種、收穫日期和其他標識進行了分類,透過質譜儀與多變量統計分析方法,能在沒有標籤的情況下也能查出茶葉樣本的來源及合法性。目前也有利用以擴增片段長度多型性(Amplified Fragment Length Polymorphism, AFLP)或檢測p -coumaroysolglucosol-rhamnosylgalactoside以分析茶葉樣本的方法,但ProfilePrint可提供生物標記和基因譜分析以外,更加便宜的分析方式,簡化的氣相色譜儀售價僅為兩千美元。   TasteMap則通過線上用戶選取的八種口味偏好類別以區別消費者,包括甜味、豐富度和澀味等,再依喜好推估茶品項和顧客之間的最佳配對,並以人工智慧與機器學習技術,通過反複試驗改進預測性能。由於TasteMap仰賴於大量數據量培訓,因此茶認證的實驗室利用超過一百萬個數據訓練樣本,以增進模型的預測能力。目前Teapasar已開始使用來自350種茶樣品的400個數據進行模型測試,隨著供應商和客戶的數量逐漸增加,機器學習的效果會更加優異。【延伸閱讀】草本茶正在全球流行中   Teapasar的創建提供了一個可擴展的業務平台,其建立基礎為新加坡國立大學(National University of Singapore, NUS)所提供的化學代謝物圖譜指紋辨識方面的專業知識,與新加坡科技研究局(Agency for Science, Technology and Research, A*STAR) 提供的機器學習算法和數據培訓,雖然目前規模較小,但代表著茶葉科學、生物技術、供應鏈整合和透明度等跨域技術的結合,可能性無限。
2018/11/19
荷蘭應用科學研究組織中心(The Netherlands Organization For Applied Scientific Research, TNO),開發能偵測土壤硝酸鹽含量並應用於監測氮礦化作用的感測器。氮對於植物生長發育與其體內蛋白質生產具有重要意義,ㄧ旦知道需要供給多少氮肥給土壤,農民就可以計算出最適合植物生長所需的肥料添加量。   目前TNO與瓦賀寧恩大學(Wageningen Universiteit)正執行ㄧ項名為DISAC(Data Intensive Smart Agrifood Chains)的計畫,此計畫與開發土壤硝酸鹽感測器相關,並與當地農業公司、科技公司及研究中心共同合作致力為精準農業研發新技術。   TNO所開發的感測器能頻繁偵測土壤中的硝酸鹽含量,提供最即時的數據。為了節省能源與數據儲存容量,研究人員每日進行量測並提供相關平均數值,藉由ㄧ系列的數據收集,能持續觀察土壤中氮礦化(nitrogen mineralization)的過程。迄今為止,所有結果皆為現場測試,未來將可於不同地點進行測量,並透過應用程式檢查數據結果。【延伸閱讀】英國土壤濕度感測器突破性進展,為智慧型灌溉鋪路   由於植物只能吸收銨態氮或硝酸態氮,因此植物生長與氮礦化程度具有相關性,藉由智慧化偵測系統提供土壤中氮含量指標,除了可協助農民了解土壤中的氮含量是否滿足植株所需,也可幫助觀察施肥後植物的利用狀況。   目前研究正於荷蘭的測試農場Dairy Campus- Vredepeel en KTC Zegveld進行測試。感測器安裝於距基座約15公分內的植株根系附近,而太陽能電源供應及相關設備則是安放於地面上。目標是利用模型與遠端偵測技術,了解預測和實際產量的差異性,以研究植物產量與其蛋白質含量,以及感測器如何實際應用於場域的方法。雖然目前仍尚未確定如何藉由此感測器優化現有的施肥機制,但這項研究有助於更瞭解植物的生長環境與氮礦化關係。
2018/11/14
透地雷達(ground penetrating radar)在土壤科學的應用很廣,由於使用容易且量測快速,因此過去常運用在測量土壤含水量。雷達是無線電偵測和定距(Radio Detection and Ranging, RADAR)的縮寫及音譯,將特定能量之電磁波發射至空間中,藉由空間物體所反射的電磁波,可計算出物體的形態及距離等參數。透地雷達則是運用相同的原理,以向地面發出與接收電磁波的方式,偵測地表的狀況並呈像,由於電磁波在通過不同介質時有不同的傳播速率,因此透過計算反射的速率,便可推知地底下的土壤組成。在戰爭上,透地雷達可用來偵測地底下是否埋設不明爆裂物,而在農業方面,土壤含水量是作物生長及灌溉的關鍵,而透地雷達可在某種程度上扮演重要的角色。   透地雷達可用來測量包含土壤含水量在內的土壤組成,含水量多寡可用來推估全球氣候變遷的趨勢外,也是農業灌溉管理的重要參數之一。雖目前已有許多方法及數學模型推估雷達波與土壤含水量之間的關聯性,但找出最精確且最快速的量測方式,仍是現在科學家努力的目標。美國羅格斯大學(Rutgers University)的研究生Jonathan Algeo及其研究團隊透過接收雷達回波的早期訊號(early time signal, ETS),藉由量測訊號中振幅強度,運用特定的方程式轉換後,即可藉此換算為土壤中的含水量。早期訊號是由土壤表層反射的波段,特點是最快反射及易受土壤含水量特性的影響,十分適合用在快速且大面積檢測土壤的含水量,甚至可用來分析土壤顆粒密度高,不被雷達偵測的黏土(clay)。【延伸閱讀】透過生物技術改良來抑制高隧道栽培設施內的土壤病原體與害蟲   該研究已發表在<Vadose Zone Journal>中,相關研究可為滴灌農業提供快速測量土壤水含量的新技術。
2018/11/13
動物受到吸血昆蟲叮咬後容易引發局部或全身的過敏與發炎反應,使用驅蟲劑可預防蚊蟲叮咬引發的不適感與疾病傳播。自1944年開發以來,敵避(diethyltoluamide, DEET)就被認為是在商業上最持久且有效的驅蟲劑,受到人們廣泛使用。然而,考量到此類人工合成藥劑可能威脅孕婦和嬰兒健康,故各界極力開發以天然植物來源為主的驅蟲劑,例如香茅、薰衣草、貓薄荷等,部分天然精油的驅蟲效果雖然良好,卻有持久性不佳之問題,若可找出天然、有效且持久的驅蟲劑,則更能減少衍生的健康風險。   椰子油是一種從成熟椰子中搾取的食用油,屬於富含飽和脂肪酸的天然植物性油脂,以豐富的月桂酸(lauric acid)和肉荳蔻酸(myristic acid)含量而聞名。美國農業部農業研究局(Agricultural Research Service, ARS)近期發表研究於Scientific Reports,證實特殊的椰子油的中鏈脂肪酸,對於多種昆蟲,例如蚊子、蜱蟲、虻和臭蟲等具有良好的驅蟲活性。在實驗室的生物測定中發現,這些脂肪酸能有效抵擋虻和臭蟲兩週,抵擋蜱蟲一週,與DEET相比之下效果更好。【延伸閱讀】椰子油可提升過氧化小體異常之果蠅壽命   作者Zhu提及,椰子油本身並非驅蟲劑,但衍生的油離脂肪酸混和物—月桂酸、癸酸(capric acid)及辛酸(caprylic acid)與其相應的甲基酯(methyl esters)對於吸血蚊蟲具有強烈的驅除性。將脂肪酸添加在含有澱粉的配方當中,能保護牛隻長達4天。除此之外還能驅除傳播茲卡病毒的埃及斑蚊,且效果比起其他的天然精油成效更佳,這些結果顯示,椰子油脂肪酸在防範蚊蟲叮咬人或動物的潛在應用性,未來或許畜牧業可利用此特性製作成低成本配方保護動物,作為人工合成藥劑的替代品。
2018/11/09
蜜蜂是大自然中植物繁衍最主要的授粉媒介,人類有三分之一的食物直接或間接的來自於需要蜜蜂授粉的作物,因此蜂群健康與人類的糧食安全緊緊相依。自2000年後開始,各地科學家發現除了藥劑影響,蜜蜂病毒的大量感染也會造成蜂群數量急遽下降。   瓦蟎(Varroa destructor)是一種原本寄生在東方蜜蜂身上的寄生蟲,除了干擾蜜蜂成長,也會傳播病毒與病菌,影響蜂群壽命;經過長時間的演化,東方蜜蜂已發展出對付瓦蟎的方法。然而,瓦蟎經由人類的商業行為傳播到了西方蜜蜂(Apis mellifera)身上,使得大量西方蜜蜂喪命,需要盡快找出防治方式或促進蜂群健康,才能維繫糧食安全。   目前已知真菌可產生具有抗細菌、病毒或真菌活性的多種化學物質,且科學家已經觀察到野外的蜜蜂會在菇類上覓食,說明牠們可能從真菌中獲得所需的藥用或營養價值。為此,華盛頓州立大學(Washington State University)與Fungi Perfecti公司合作,嘗試使用多孔菌中的Fomes fomentarius和Ganoderma applanatum菌絲體進行萃取,並測試以萃取物餵食蜜蜂後的效果。   經過實驗證實,餵食G. applanatum萃取物的處理組與對照組相比,蜜蜂體內的蜜蜂畸翅病毒(deformed wing virus, DWV)減少了79倍,而西奈湖病毒(Lake Sinai virus, LSV)減少了45,000倍,顯示真菌於此方面的應用具有巨大潛力。【延伸閱讀】桑樹施用殺菌劑可能減少蠶絲生產   目前菌絲體萃取物的產量還不足以提供養蜂人購買的規模,未來將會持續研究蜂群的最佳使用量,以提供業者管理時的參考依據,並促進Fungi Perfecti提高產量。   此項目的部分由USDA-NIFA項目WNP00604資助,相關研究發表於<Scientific Reports>。
2018/11/08
蘆薈黏液(Aloe vera mucilage, AVM)本身具有優異的疏油特性,能分離油脂和水,研究人員首次利用天然存在的蘆薈凝膠開發相關研究。過往大部分研究多以模仿自然界的生物結構(例如魚鱗)探討疏油性材料,但比起材質的優化,使用修飾後的蘆薈凝膠能更有效地使基材表面達到阻隔油脂的效果。   現在,印度理工學院化學系則利用蘆薈葉中含有的濃稠凝膠,透過麥可加成(Micheal addition reaction)轉化成疏油材料;表面塗有凝膠的相關基材與油脂接觸後,接觸角(contact angle) 大約為150度,近似於蓮葉的疏水原理。研究人員也發現,此材料暴露於沸水(100℃)60分鐘、液態氮(-196℃) 24小時、強酸(pH1)與強鹼(pH12)環境、人造海水和河水30天後,仍保有完整的疏油特性。此外,若將凝膠塗抹在市售多孔性親油材質上,可將該材質變得極度疏油性,油脂接觸角達到151度。但若材料經過彎曲或扭曲,接觸角會減少至146度,而遭受如砂紙磨損,刮刀試驗等嚴重的物理磨損也會造成接觸角度降至100度以下。   為維持蘆薈凝膠於生活中的使用度,該團隊利用聚二季戊四醇五丙烯酸酯(dipentaerythritol pentaacrylate或5Acl)與凝膠塗層結合,再透過增加親水性胺基葡萄糖(glucamine),可讓整體疏油性提高至155度,其材質拉伸約150%並彎曲至少1,000次以上,仍可保有完整的疏油特性。【延伸閱讀】以木頭製作的海綿可幫助水面上的油汙回收   Manna博士表示:「研究人員能夠利用此材料將輕 (媒油)與重油從水中分離,並且重覆使用至少25次後其分離效率仍高於97%。」即使在極端pH值、高鹽度、低溫和高溫等惡劣條件下,仍保持油水分離的效率。   相關研究發表於<Journal of Material Chemistry A>
2018/11/06
目前國際上的可可生產量並無明顯增加,但需求卻仍不斷增長,故相關食品行業正在努力尋找用於可可產品的新型替代品。而市面上一般販售的即溶卡布奇諾通常含有咖啡、牛奶與巧克力粉末,其中巧克力的質和量根據製造商而有所不同,高檔產品採用可可粉,但低端產品大多使用人工香料。   菠蘿蜜(Artocarpus heterophyllus Lam.)是一種原產於印度的熱帶水果,在3000多年前就被馴化,是東南亞飲食中重要的食材。種子佔果實重量的18-25%,果實可生吃或加工,種子可經過烘培或炒過後食用。作者Fernanda Papa Spada在一次開發水果副產物加工試驗中,偶然發現學生利用烤菠蘿蜜種子製成的麵包具有濃烈的巧克力味。經過研究後,發現菠蘿蜜種子本身並不會發出可可的氣味,但經過發酵與烘焙後就可產生可可香氣,或許可取代即溶卡布其諾咖啡包中的巧克力成分。【延伸閱讀】在食品中添加綠茶萃取物作為可食用塗層能降低感染諾羅病毒風險   由於可可的特殊香氣是來自於發酵及焙炒過程中產生的揮發性化合物,故須確定焙炒和發酵菠蘿蜜種子的理想條件才可以獲得與可可相似的味道。為測試最佳的加工方式,團隊分析了經過33種不同程度烘焙的種子,可替代50%至75%的可可製成卡布奇諾而無損其風味或香氣。經過這樣方式,可開拓菠蘿蜜或其他植物種子的加工利用管道,相關研究發表於<Plos One>。

網站導覽
活動資訊
訂閱RSS
電子報訂閱