MENU iconMENU
農糧領域
農糧領域
2019/02/04
一般而言,無人機通常平均飛行時間為20分鐘,因維持機翼旋轉需要大量能量,若要維持長時間的飛行,也代表需要更大、更重的電池;而無人機越小,飛行時間也越短,這樣的能量需求使得無人機應用尚無法擺脫尺寸限制。   現在美國華盛頓大學(University of Washington)發掘一個既強大又輕便的動力源—昆蟲,足以讓無人機持續約七個小時的飛行時間,並將其稱為Living IoT。這是一個飛行無線平台,包含感測器、無線通訊和定位追蹤器,可搭載於活體昆蟲而昆蟲於田間飛行時便可同時監測溫度、濕度、光照強度或作物健康狀況。   由於昆蟲本身已具飛行能力,因此只需搭配可持續七個小時的微型充電電池(約重70毫克)即可,整體元件僅需數美元,重量僅為102毫克,約為7粒生米的重量。而大黃蜂(bumblebee)可承受與自身體重相等的重量,一隻蜂約重113毫克,且體型較大,能夠攜帶團隊開發的微型電池,因此受到青睞。除此之外,與一般無人機不同,蜜蜂能夠飛行數小時,也具有電子零件無法達成的特質;一般無人機就只是隨意在田間飛行,但蜜蜂會受特定物質吸引,所以除了能以此監控環境外,還可以更加了解蜜蜂的行為模式。【延伸閱讀】海洋中的大型海藻養殖場將成為未來生質燃料的來源之一   為了追蹤蜜蜂,研究人員在足球場上設置了四個天線基地,利用蜜蜂身上的接收器的信號強度及蜜蜂與基地站之間的角度差進行三角測量,最遠可以偵測到距離天線外80公尺的地方(約四分之三個足球場),而蜜蜂通常飛行距離為百米內,故可完全掌握訊號位置;當蜜蜂返回蜂巢過夜時,電池便會重新充電並上傳數據。安裝或取下零件時只要將蜜蜂裝在罐子裡,再放入冰箱模擬冬眠時的溫度,減少其活動力,便可輕鬆完成,且整個過程並不會傷害到蜜蜂。通過感測器,我們更可以了解蜜蜂的野外行為,理解為何蜂群數量會下降。   研究團隊計劃在ACM MobiCom 2019上展示他們的研究成果,但這並非團隊第一次進行無人機研究的發表,過往曾推出RoboFly,這是一種由雷射光驅動的昆蟲機器人,透過雷射光投射能量給機器人上方的光伏電池並轉換成足夠的電力。而RoboFly的飛行模式可以進行人為控制,或許有一天能夠應用於偵測氣體外洩、檢測植物病蟲害,或進入狹小空間中尋找災難倖存者。
2019/01/29
在世界人口快速增長的趨勢下,人們對糧食的需求提高,全球糧食安全議題此刻成了各國政府關注的焦點之一。而在眾多因應之道中,都市農業或許成了緩解糧食安全疑慮的有效方法。
2019/01/23
隨著市場經濟迅速發展和人民消費水準不斷提高,消費者意識逐漸趨於複雜,在多樣化的選擇面前,超市未來在農產品加工、保鮮、物流等技術更朝向數位化、自動化提升,未來技術創新與消費者喜好將促使現有的商業模式進一步發生變化。
2019/01/22
部分人口可能因為受到遺傳、環境、作息、食物烹調方式等影響,造成免疫系統對攝入的食物蛋白或是其他物質過度反應,產生皮膚紅疹、噁心、消化道腫脹、腹瀉、氣喘等食物過敏的症狀,嚴重者甚至導致休克或死亡。然而食物中的過敏原種類繁多,可能受加工程序或產線重疊等因素使得消費者無意間購買並食用含有過敏原的產品,因此近年來各地食品管理部門紛紛提出食品中的過敏源標示規範。我國衛生福利部食品藥物管理署也將於108年7 月1日起施行11項食品過敏原標示規定,守護民眾食的安全。   瑞士第二大零售商Coop與標籤設計軟體NiceLabel的開發商合作,整合和簡化其工廠和麵包零售店標籤流程,以統一和可追溯的方式生產含有過敏原成分和營養資訊的食品標籤。公司聲稱,無論標籤是在哪個麵包店或生產設施上產生,消費者都可以相信上面包含準確和最新的過敏原和營養資訊。此系統可幫助食品和飲料製造商滿足法規和各地區標籤要求,改善食品安全。【延伸閱讀】IBM與雀巢、聯合利華等食品龍頭合作利用區塊鏈追蹤食物汙染源   起初Coop並無統一的標籤格式,一種標籤必須創造多種版本以使用在不同的列印設備,且無數位化轉換與統一管理的中央系統,不利於產品品質管理和使用者訓練,這些都是生產背後所不可忽視的風險成本。透過開發跨設備的通用標籤模板與流程數位化,有利於建立標準化的作業流程,提升生產速度並輕鬆管理多種語言的過敏原和營養資訊,所有的修改程序也記錄至檔案管理系統,增進可追溯性;NiceLabel系統使Coop在2017年的營業額達到250億歐元。   現在隨著Label Cloud的推出,NiceLabel標籤管理系統也可以在雲端進行管理,更增加了使用上的靈活性。越來越多的消費者過敏案例使得食品標籤市場正在發生變化,製造商於生產端就推出清楚明瞭的產品資訊有利於選購時的安全,並能累積消費者信心。
2019/01/19
實驗室中用血青素(或稱血藍蛋白)處理的木材樣品產生的醣量是常規工業處理的兩倍,表示使用gribble從木材生產生質能源可能比現今使用的工業技術更加便宜且乾淨,以此方式生產的能源並不會與糧食作物的使用發生衝突。
2019/01/18
有關麴黴菌的抑菌處理及去除毒素的實驗方法,近年發展的主流為萃取植物的液態抑菌萃取物及經提煉的精油。
2019/01/16
Brazzein是一種帶有甜味的蛋白質,甜度是蔗糖的2,000倍,卡洛里更低;然而從果實中純化Brazzein所耗費的成本較高,嘗試使用細菌發酵工程進行Brazzein的生產,以求在短時間內獲得大量產物並同時降低成本。
2019/01/15
農民未來只需搭配能連結手機的特殊檢測裝置,便可將數據透過手機應用程式進行記錄並將數據與預先建構的資料庫進行資料比對,除可對果實進行初步篩選分類外,也能將果實成熟度與現有市場的銷售情況搭配,以便適時調整採收的進度,調節可能面臨的產銷問題,提升產品的競爭力。
2019/01/11
英國研究發現陸生開花植物具有一套感知及記憶環境狀態的能力,提供植物逆境調控基因之基礎研究,或許能應用在品種選育與作物經營管理方面。
2019/01/10
未來農業的發展,人工智慧(AI)將扮演重要的推手,以先「學習」後執行指令以達成目的,運用電腦視覺判讀感測器接收到的農作物影像,例如自動採摘已成熟的果實、自動辨識病蟲害嚴重的農作區域,為電腦所理解的一個過程及技術。
2019/01/08
透過農桿菌感染的方式影響調控異型花柱的已知關鍵基因S-Locus上,以此建置一套有別於模式物種的農桿菌轉殖系統,有助於更進一步了解異型花柱在花部形態發育及發育演化方面的意義。
2019/01/04
未來可運用人工智慧與機器學習運算,結合地景生態學,運用網絡運算方法規劃蜜蜂最佳的訪蜜途徑,經濟效益高且管理方便的地區為植樹主要地點,除提供蜜蜂棲息與覓食的景觀環境,同時也讓透過蜜蜂傳粉的植物成功授粉、繁衍後代。

網站導覽
活動資訊
訂閱RSS
電子報訂閱