動植物研究前沿分析 - 2012Q2

本計畫將利用 Thomson Reuters 出版 ESI 資料庫所提供之「研究前沿」(Research Front)功能,定期提供動植物領域前十名之熱門研究前沿主題。主要期望科研人員能了解各研究前沿之核心文獻,有助於獲知目前全球動植物領域的研究成果有哪些重要發現,更能反映出當前科學家重點關注的方向。另外也會透過資訊加值分析,提供各前沿主題之研發跨領域分布,以作為科研人員進行研發策略規劃之團隊組成之參考。

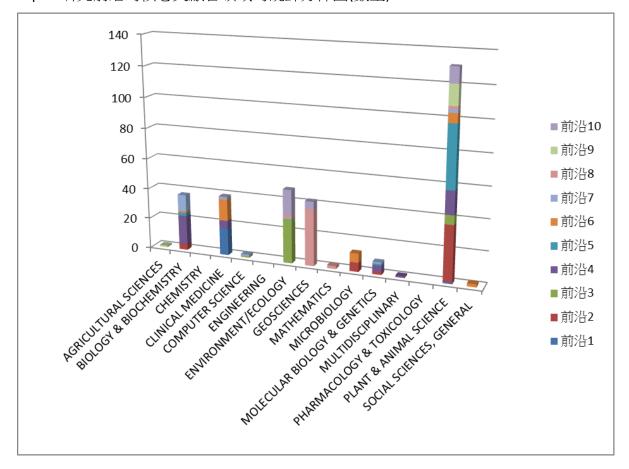
TOP10 動植物領域研究前沿

前沿排名	前沿	摘要說明
前沿 1	SWINE-ORIGIN 2009 A(H1N1) INFLUENZA VIRUSES	人畜共通的傳染病,如禽流感及豬流感
	CIRCULATING; 2009 SWINE-ORIGIN H1N1	的引進可能會在人口密集處廣為流行,
	INFLUENZA; 2009 INFLUENZA A(H1N1) ACUTE	這種人畜共通的疾病傳播能力通常被認
	RESPIRATORY DISTRESS SYNDROME; PANDEMIC	為與病毒的遺傳物質突變有關。評估豬
	2009 INFLUENZA A(H1N1) INFECTION; NEW	流感及禽流感對人類的跨物種轉移潛在
	SWINE-ORIGIN H1N1 INFLUENZA VIRUSES IN	能力便成為科學家研究重點之一。
	PLANT & ANIMAL SCIENCE	
前沿 2	PSEUDOMONAS SYRINGAE EFFECTOR AVRPTO;	植物透過模式辨識受體
	INNATE IMMUNITY; PLANT	(Pattern-Recognition Receptor, PRR)來辨
	PATTERN-RECOGNITION RECEPTOR CONFERS	認與病原體有關的分子模式
	BROAD-SPECTRUM BACTERIAL RESISTANCE;	(pathogen-associated molecular
	PLANT INNATE IMMUNE RECEPTOR; BACTERIAL	patterns,PAMPs),藉此感知微生物的
	VIRULENCE PROTEIN SUPPRESSES HOST INNATE	入侵。這些受體通常位於細胞表面。病
	IMMUNITY IN PLANT & ANIMAL SCIENCE	原體成功入侵植物體的關鍵在於降低
		PAMPs的感知能力及阻斷訊號分子的傳
		遞路徑。這些可干擾 PRR 路徑的分子便
		成為科學家們熱門的研究課題。
前沿 3	ASYMMETRIC COEVOLUTIONARY NETWORKS;	在過去十幾年中,生物多樣性及生態系
	BIODIVERSITY MAINTENANCE; GRASSLAND	統功能相關研究層出不窮。在這部分的
	COMMUNITIES REQUIRES HIGHER BIODIVERSITY;	研究包括(1)全球環境劇變所導致的生
	FUNCTIONAL BIODIVERSITY RESEARCH;	物多樣性喪失(2)生物多樣性減少導致
	BIODIVERSITY EFFECTS; BIODIVERSITY IMPROVES	物種的組成改變,這些改變可能會對與
	WATER QUALITY IN PLANT & ANIMAL SCIENCE	人類活動息息相關之重要生態系統造成
		衝擊;如食物生產、病蟲害防治等。因
		此,如何取得農業生產及維護生態之間
		的平衡仍是全球急需解決的問題。
前沿 4	ZINC-FINGER NUCLEASES; ENGINEERED	鋅指核酸酶是一類通過基因工程改造的

FINGER NUCLEASES; DESIGNED ZINC-FINGER NUCLEASES; CUSTOM-DESIGNED ZINC-FINGER NUCLEASES; CUSTOM-DESIGNED ZINC FINGER NUCLEASES; CUSTOM-DESIGNED ZINC FINGER NUCLEASES IN PLANT & ANIMAL SCIENCE		ZINC-FINGER NUCLEASES; ENGINEERED ZINC	基因組編輯核酸酶,它們能夠識別並結
NUCLEASES IN PLANT & ANIMAL SCIENCE		FINGER NUCLEASES; DESIGNED ZINC-FINGER	合指定的位點,高效且精確地切斷靶
解: 包括基因修復、基周刪除等工作,並定位和單峰改變生物基因組。此項研究為植物基因體功能研究及植物病害等方面創造了新的可能性。		NUCLEASES; CUSTOM-DESIGNED ZINC FINGER	DNA。並利用細胞自然的 DNA 修復過
並定位和準確改變生物基因組。此項研究為植物基因體功能研究及植物病害等 方面創造了新的可能性。 TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID-ACTIVATED PROTEIN KINASES; ABSCISIC ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID SIGNALING IN-VIVO; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYL5 IN PLANT & ANIMAL SCIENCE 前沿 6 GREAT NEGLECTED TROPICAL DISEASES; SOIL-TRANSMITTED HELMINTH INFECTIONS; HUMAN HELMINTH INFECTIONS; HUMAN HELMINTH INFECTIONS; COPROANTIGEN REDUCTION TEST (CRT) PROTOCOL; NATIONWIDE SCHOOL-BASED HELMINTH CONTROL IN PLANT & ANIMAL SCIENCE 前沿 7 ARTHROPOD PHYLOGENY, SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENE REPEATORE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE 前沿 8 ARCTIC OCEAN SEA ICE COVER; EXTERME ARCTIC SEA ICE EMELT; SEA ICE FREE SUMMER ARCTIC SEA ICE MELT; SEA ICE FREE SUMEMER ARCTIC SEA ICE MELT; SEA ICE FREE SUMEMER A		NUCLEASES IN PLANT & ANIMAL SCIENCE	程來修復靶基因的斷裂,進行基因組編
第25			輯;包括基因修復、基因刪除等工作,
加治 5 TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID INHIBITS TYPE 2C PROTEIN KINASES; ABSCISIC ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID SIGNALING IN-VIVO; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYL5 IN PLANT & ANIMAL SCIENCE 前沿 6 GREAT NEGLECTED TROPICAL DISEASES; SOIL-TRANSMITTED HELMINTH INFECTIONS; HUMAN HELMINTH INFECTIONS; HUMAN HELMINTH INFECTIONS; COPROANTIGEN REDUCTION TEST (CRT) PROTOCOL; NATIONWIDE SCHOOL-BASED HELMINTH CONTROL IN PLANT & ANIMAL SCIENCE 前沿 7 ARTHROPOD PHYLOGENY; SEA ANEMONE GENOME REVEALES ANCESTRAL EUMETAZOAN GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS IN MEXAMEN BEQUENCE IN PLANT & ANIMAL SCIENCE 前沿 8 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER; EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE SUMMER ARCTI			並定位和準確改變生物基因組。此項研
前沿 5 TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID ACID-ACTIVATED PROTEIN KINASES; ABSCISIC ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID SIGNALING IN-VIVO; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYL5 IN PLANT & ANIMAL SCIENCE			究為植物基因體功能研究及植物病害等
ACID-ACTIVATED PROTEIN KINASES; ABSCISIC ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID SIGNALING IN-VIVO; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYLS IN PLANT & ANIMAL SCIENCE 静植物在對抗乾旱逆境時重要的質關 家, 因此研究 PP2C 與離層離就漂纏路 便之間的關係,將有助於提升作物之抗 平性。 1			方面創造了新的可能性。
ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID SIGNALING IN-VIVO; ABSCISIC ACID Signaling in-VivO; ABSCISIC ACID Signaling in-VivO; ABSCISIC ACID Signaling in-VivO; ABSCISIC ACID Signaling in Plant & Animal Science	前沿 5	TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC	2C 型蛋白質水解磷酸酶 (Type 2C
ABSCISIC ACID SIGNALING IN-VIVO; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYL5 IN PLANT & ANIMAL SCIENCE		ACID-ACTIVATED PROTEIN KINASES; ABSCISIC	protein phosphatases,PP2Cs)是參與離
RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYL5 IN PLANT & ANIMAL SCIENCE 经之間的關係,將有助於提升作物之抗旱性。 前沿 6 GREAT NEGLECTED TROPICAL DISEASES; OULTRANSMITTED HELMINTH INFECTIONS; HUMAN HELMINTH INFECTIONS; COPROANTIGEN REDUCTION TEST (CRT) PROTOCOL; NATIONWIDE SCHOOL-BASED HELMINTH CONTROL IN PLANT & MOMENTAL ANIMAL SCIENCE ANIMAL SCIENCE ARTHROPOD PHYLOGENY; SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE 地行此方面的研究,可使人類了解自然不完成,可使人類了解自然来来多樣性起源。 化水洋 (Arctic Ocean) 位於北半球座落於北極國以內的海洋,是世界五大洋最巨工作工匠 (Arctic Ocean) 位於北半球座落於北極國以內的海洋,近半來,科學家致力於研究全球暖化對北冰洋氣候和環境的影響,主要的目的是透過對北冰洋氣候和環境的新達,主要的目的是透過對北冰洋洋洋流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候和環境變化的模型。 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草 (Brachypodium distachyon)		ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES;	層酸(ABA)訊號傳遞的重要分子,離層酸
前沿 6 GREAT NEGLECTED TROPICAL DISEASES;		ABSCISIC ACID SIGNALING IN-VIVO; ABSCISIC ACID	為植物在對抗乾旱逆境時重要的賀爾
開沿 6 GREAT NEGLECTED TROPICAL DISEASES; 一些人畜共通的等生蟲疾病,如螭蟲、		RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYL5	蒙,因此研究 PP2C 與離層酸訊號傳遞路
前沿 6 GREAT NEGLECTED TROPICAL DISEASES; SOIL-TRANSMITTED HELMINTH INFECTIONS; HUMAN HELMINTH INFECTIONS; COPROANTIGEN 如西洋菜,或因喝了未煮沸的含囊状的 REDUCTION TEST (CRT) PROTOCOL; NATIONWIDE SOHOOL-BASED HELMINTH CONTROL IN PLANT & MY 受性好且治療期間短,便成為治療此 類疾病的新興藥物。TCBZ 的使用研究可 為此類疾病提供一個有效的治療及控制 方法。 前沿 7 ARTHROPOD PHYLOGENY; SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS 同的關係有極大的助益,透過形態學的 REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE 地行此方面的研究,可使人類了解自然 PLANT & ANIMAL SCIENCE 地行此方面的研究,可使人類了解自然 和地球生物多樣性起源。 前沿 8 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER; EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE SUMMER ARCTIC SEA ICE MELT; SEA ICE FREE SUM IN TUMPER		IN PLANT & ANIMAL SCIENCE	徑之間的關係,將有助於提升作物之抗
SOIL-TRANSMITTED HELMINTH INFECTIONS; HUMAN HELMINTH INFECTIONS; COPROANTIGEN 如西洋菜,或因喝了未煮沸的含囊状幼 最的水而感染。三氟苯達唑(TCBZ)因 SCHOOL-BASED HELMINTH CONTROL IN PLANT & 和IMAL SCIENCE 前沿 ARTHROPOD PHYLOGENY; SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS 同的關係有極大的助益,透過形態學的 REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE 前沿 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER; EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE 前沿 MODEL GRASS BRACHYPODIUM DISTACHYON; 前沿 MODEL GRASS BRACHYPODIUM DISTACHYON; 「用用吸血蟲等。人類常因生吃水生植物 如西洋菜,或因喝了未煮沸的含囊状幼 最終的新導酶。三氟苯達唑(TCBZ)因 耐受性好且治療期間短,便成為治療此 類疾病的新興藥物。TCBZ)因 耐受性好且治療期間短,便成為治療因性不足器的、一種短柄洋、可使人類了解自然的一种原理等的。 如此球生物多樣性起源。 北冰洋(Arctic Ocean)位於北半球座落於北極園以內的海洋,是世界五大洋最小、最後的海洋。近年來,科學家致力於研究全球暖化對北冰洋氣候的影響,主要的目的是透過對北冰洋洋流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候和環境的			旱性。
HUMAN HELMINTH INFECTIONS; COPROANTIGEN REDUCTION TEST (CRT) PROTOCOL; NATIONWIDE ASON ASON ASON ASON ASON ASON ASON ASON	前沿 6	GREAT NEGLECTED TROPICAL DISEASES;	一些人畜共通的寄生蟲疾病,如蠕蟲、
REDUCTION TEST (CRT) PROTOCOL; NATIONWIDE SCHOOL-BASED HELMINTH CONTROL IN PLANT & 耐受性好且治療期間短,便成為治療此 新疾病的新興藥物。TCBZ 的使用研究可 為此類疾病提供一個有效的治療及控制 方法。 ARTHROPOD PHYLOGENY, SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE		SOIL-TRANSMITTED HELMINTH INFECTIONS;	肝片吸血蟲等。人類常因生吃水生植物
SCHOOL-BASED HELMINTH CONTROL IN PLANT & 耐受性好且治療期間短,便成為治療此類疾病的新興藥物。TCBZ 的使用研究可為此類疾病提供一個有效的治療及控制方法。 ARTHROPOD PHYLOGENY; SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE 地行此方面的研究,可使人類了解自然和地球生物多樣性起源。 前沿 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER; EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE 外研究全球暖化對北冰洋氣候和環境的影響,主要的目的是透過對北冰洋洋流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候和環境變化的模型。 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草 (Brachypodium distachyon)		HUMAN HELMINTH INFECTIONS; COPROANTIGEN	如西洋菜,或因喝了未煮沸的含囊狀幼
ANIMAL SCIENCE 類疾病的新興藥物。TCBZ 的使用研究可為此類疾病提供一個有效的治療及控制方法。 IT ARTHROPOD PHYLOGENY; SEA ANEMONE 自從生物學問世以來,人類一直致力於 GENOME REVEALS ANCESTRAL EUMETAZOAN 了解節肢動物各主要網之間的關係。節 GENE REPERTOIRE; ARTHROPOD PHYLOGENY 股動物的演化對研究甲殼類動物物種之 REVISITED; ARTHROPOD RELATIONSHIPS 間的關係有極大的助益,透過形態學的 REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE		REDUCTION TEST (CRT) PROTOCOL; NATIONWIDE	蟲的水而感染。三氯苯達唑(TCBZ)因
期沿 7 ARTHROPOD PHYLOGENY; SEA ANEMONE		SCHOOL-BASED HELMINTH CONTROL IN PLANT &	耐受性好且治療期間短,便成為治療此
方法。 前沿 7 ARTHROPOD PHYLOGENY; SEA ANEMONE 自從生物學問世以來,人類一直致力於 GENOME REVEALS ANCESTRAL EUMETAZOAN 了解節肢動物各主要網之間的關係。節 GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS 間的關係有極大的助益,透過形態學的 REVEALED; PROTEIN-CODING NUCLEAR GENE 第EQUENCE IN PLANT & ANIMAL SCIENCE 進行此方面的研究,可使人類了解自然 和地球生物多樣性起源。 前沿 8 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER; 是XTREME ARCTIC SEA ICE MELT; SEA ICE FREE SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE 外研究全球暖化對北冰洋氣候和環境的 影響,主要的目的是透過對北冰洋洋流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候和環境變化的模型。 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草(Brachypodium distachyon)		ANIMAL SCIENCE	類疾病的新興藥物。TCBZ 的使用研究可
前沿 7ARTHROPOD PHYLOGENY; SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENOME REVEALS ANCESTRAL EUMETAZOAN GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE肢動物的演化對研究甲殼類動物物種之 觀點;如化石及分子生物學相關數據來 進行此方面的研究,可使人類了解自然 和地球生物多樣性起源。前沿 8ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA 			為此類疾病提供一個有效的治療及控制
GENOME REVEALS ANCESTRAL EUMETAZOAN			方法。
展EVISITED; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS 間的關係有極大的助益,透過形態學的 REVEALED; PROTEIN-CODING NUCLEAR GENE	前沿7	ARTHROPOD PHYLOGENY; SEA ANEMONE	自從生物學問世以來,人類一直致力於
REVISITED; ARTHROPOD RELATIONSHIPS REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE 前沿 8 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER; EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; li 的關係有極大的助益,透過形態學的觀點;如化石及分子生物學相關數據來 進行此方面的研究,可使人類了解自然 和地球生物多樣性起源。 北冰洋(Arctic Ocean)位於北半球座落於北極圈以內的海洋,是世界五大洋最 於北極圈以內的海洋,是世界五大洋最 小、最淺的海洋。近年來,科學家致力 於研究全球暖化對北冰洋氣候和環境的影響,主要的目的是透過對北冰洋洋 流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候 和環境變化的模型。		GENOME REVEALS ANCESTRAL EUMETAZOAN	了解節肢動物各主要綱之間的關係。節
REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE 進行此方面的研究,可使人類了解自然和地球生物多樣性起源。 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER;		GENE REPERTOIRE; ARTHROPOD PHYLOGENY	肢動物的演化對研究甲殼類動物物種之
SEQUENCE IN PLANT & ANIMAL SCIENCE		REVISITED; ARTHROPOD RELATIONSHIPS	間的關係有極大的助益,透過形態學的
和地球生物多樣性起源。 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA		REVEALED; PROTEIN-CODING NUCLEAR GENE	觀點;如化石及分子生物學相關數據來
前沿 8 ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA		SEQUENCE IN PLANT & ANIMAL SCIENCE	進行此方面的研究,可使人類了解自然
ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER; 於北極圈以內的海洋,是世界五大洋最EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE 小、最淺的海洋。近年來,科學家致力SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE 於研究全球暖化對北冰洋氣候和環境的影響,主要的目的是透過對北冰洋洋流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候和環境變化的模型。 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草(Brachypodium distachyon)			和地球生物多樣性起源。
EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE 小、最淺的海洋。近年來,科學家致力 SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE 於研究全球暖化對北冰洋氣候和環境的 影響,主要的目的是透過對北冰洋洋 流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候 和環境變化的模型。 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草(Brachypodium distachyon)	前沿 8	ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA	北冰洋(Arctic Ocean)位於北半球座落
SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE		ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER;	於北極圈以內的海洋,是世界五大洋最
影響,主要的目的是透過對北冰洋洋流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候和環境變化的模型。 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草(Brachypodium distachyon)		EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE	小、最淺的海洋。近年來,科學家致力
流、含鹽度和溫度等數據的搜整和分析,建立一個能夠準確預測北冰洋氣候和環境變化的模型。 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草(Brachypodium distachyon)		SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE	於研究全球暖化對北冰洋氣候和環境的
析,建立一個能夠準確預測北冰洋氣候和環境變化的模型。 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草(Brachypodium distachyon)			影響,主要的目的是透過對北冰洋洋
和環境變化的模型。 前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草(Brachypodium distachyon)			流、含鹽度和溫度等數據的搜整和分
前沿 9 MODEL GRASS BRACHYPODIUM DISTACHYON; 二穗短柄草(Brachypodium distachyon)			析,建立一個能夠準確預測北冰洋氣候
			和環境變化的模型。
GRASS GENOME EVOLUTION; BARLEY GENOME; 原生於地中海和中東,是一種當地野生	前沿 9	MODEL GRASS BRACHYPODIUM DISTACHYON;	二穗短柄草(Brachypodium distachyon)
		GRASS GENOME EVOLUTION; BARLEY GENOME;	原生於地中海和中東,是一種當地野生

GENOME SEQUENCING; GRAPEVINE GENOME
SEQUENCE SUGGESTS ANCESTRAL
HEXAPLOIDIZATION IN PLANT & ANIMAL SCIENCE

草本植物,其基因組已完成定序。使用 短柄草、水稻和高粱基因組進行的比較 基因組研究,不僅為草本植物之基因組 演化提供了線索,且有助於新能源作物 和糧食作物模型的建立。


前沿 10 CO2-DRIVEN OCEAN ACIDIFICATION; LARVAL SURVIVAL; NEAR-FUTURE OCEAN ACIDIFICATION; OCEAN ACIDIFICATION CAUSES BLEACHING; OCEAN ACIDIFICATION ALTERS SKELETOGENESIS; IMMINENT OCEAN ACIDIFICATION IN PLANT & ANIMAL SCIENCE

海洋酸化是由於燃燒化石燃料,排放大量的二氧化碳到大氣中,這些二氧化碳 又被海洋吸收所致。海洋酸化使海水化學性質改變,並對海洋生態系造成了極大的威脅,如熱帶珊瑚失去造礁能力等。因此,藉由觀察多種環境因子及大氣組成改變,推估對環境所造成的非預期影響是很重要的。

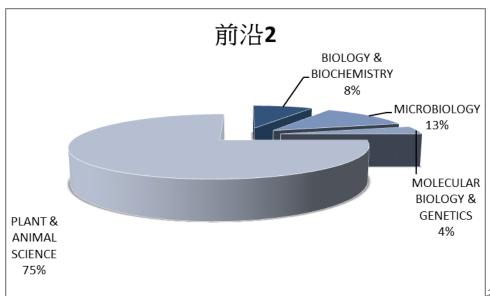
Top10 研究前沿的核心文獻各領域的統計(數量)


	AGRICULTURAL SCIENCES	BIOLOGY & BIOCHEMISTRY	CHEMISTRY	CLINICAL MEDICINE	COMPUTER SCIENCE	ENGINEERING	ENVIRONMENT/ECOLOGY	GEOSCIENCES	матнематісѕ	MICROBIOLOGY	MOLECULAR BIOLOGY & GENETICS	MULTIDISCIPLINARY	PHARMACOLOGY & TOXICOLOGY	PLANT & ANIMAL SCIENCE	SOCIAL SCIENCES, GENERAL
前沿1				18										1	
前沿 2		4								6	2			36	
前沿 3					1		29							6	
前沿 4		19		5							4	1		15	
前沿 5		2									1			40	
前沿 6		1		14						6				6	2
前沿7		11		1	1		1				1			2	
前沿 8							2	37	2					2	
前沿9	1													13	
前沿 10				1			16	5						10	

Top10 研究前沿的核心文獻各領域的統計分佈圖(數量)

動植物前沿一

SWINE-ORIGIN 2009 A(H1N1) INFLUENZA VIRUSES CIRCULATING; 2009 SWINE-ORIGIN H1N1 INFLUENZA; 2009 INFLUENZA A(H1N1) ACUTE RESPIRATORY DISTRESS SYNDROME; PANDEMIC 2009 INFLUENZA A(H1N1) INFECTION; NEW SWINE-ORIGIN H1N1 INFLUENZA VIRUSES IN PLANT & ANIMAL SCIENCE


各分類領域比例圖

核心文獻標題	Citation	分類領域
EMERGENCE OF A NOVEL SWINE-ORIGIN INFLUENZA A (H1N1) VIRUS	1047	CLINICAL MEDICINE
IN HUMANS NOVEL SWINE-ORIGIN INFLUENZA A (H1N1) VIRUS		
INVESTIGATION TEAM		
ANTIGENIC AND GENETIC CHARACTERISTICS OF SWINE-ORIGIN 2009	615	CLINICAL MEDICINE
A(H1N1) INFLUENZA VIRUSES CIRCULATING IN HUMANS		
HOSPITALIZED PATIENTS WITH 2009 H1N1 INFLUENZA IN THE UNITED	540	CLINICAL MEDICINE
STATES, APRIL-JUNE 2009.		
PNEUMONIA AND RESPIRATORY FAILURE FROM SWINE-ORIGIN	484	CLINICAL MEDICINE
INFLUENZA A (H1N1) IN MEXICO		
ORIGINS AND EVOLUTIONARY GENOMICS OF THE 2009	409	CLINICAL MEDICINE
SWINE-ORIGIN H1N1 INFLUENZA A EPIDEMIC		
CRITICALLY ILL PATIENTS WITH 2009 INFLUENZA A(H1N1) INFECTION	399	CLINICAL MEDICINE
IN CANADA		
IN VITRO AND IN VIVO CHARACTERIZATION OF NEW SWINE-ORIGIN	336	CLINICAL MEDICINE
H1N1 INFLUENZA VIRUSES		
CRITICAL CARE SERVICES AND 2009 H1N1 INFLUENZA IN AUSTRALIA	333	CLINICAL MEDICINE
AND NEW ZEALAND.		
FACTORS ASSOCIATED WITH DEATH OR HOSPITALIZATION DUE TO	295	CLINICAL MEDICINE
PANDEMIC 2009 INFLUENZA A(H1N1) INFECTION IN CALIFORNIA		

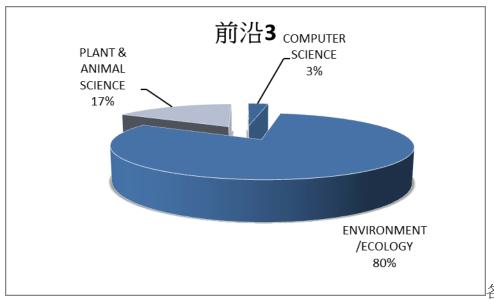
CRITICALLY ILL PATIENTS WITH 2009 INFLUENZA A(H1N1) IN MEXICO	286	CLINICAL MEDICINE
SEVERE RESPIRATORY DISEASE CONCURRENT WITH THE	246	CLINICAL MEDICINE
CIRCULATION OF H1N1 INFLUENZA		
EXTRACORPOREAL MEMBRANE OXYGENATION FOR 2009 INFLUENZA	231	CLINICAL MEDICINE
A(H1N1) ACUTE RESPIRATORY DISTRESS SYNDROME		
TRANSMISSION AND PATHOGENESIS OF SWINE-ORIGIN 2009	224	CLINICAL MEDICINE
A(H1N1) INFLUENZA VIRUSES IN FERRETS AND MICE		
TRIPLE-REASSORTANT SWINE INFLUENZA A (H1) IN HUMANS IN THE	218	CLINICAL MEDICINE
UNITED STATES, 2005-2009		
PATHOGENESIS AND TRANSMISSION OF SWINE-ORIGIN 2009	205	CLINICAL MEDICINE
A(H1N1) INFLUENZA VIRUS IN FERRETS		
EFFICACY AND ECONOMIC ASSESSMENT OF CONVENTIONAL	185	CLINICAL MEDICINE
VENTILATORY SUPPORT VERSUS EXTRACORPOREAL MEMBRANE		
OXYGENATION FOR SEVERE ADULT RESPIRATORY FAILURE (CESAR): A		
MULTICENTRE RANDOMISED CONTROLLED TRIAL		
INTENSIVE CARE ADULT PATIENTS WITH SEVERE RESPIRATORY	164	CLINICAL MEDICINE
FAILURE CAUSED BY INFLUENZA A (H1N1)V IN SPAIN		
CASES OF SWINE INFLUENZA IN HUMANS: A REVIEW OF THE	137	CLINICAL MEDICINE
LITERATURE		
AVIAN AND SWINE INFLUENZA VIRUSES: OUR CURRENT	71	PLANT & ANIMAL
UNDERSTANDING OF THE ZOONOTIC RISK		SCIENCE

動植物前沿二

PSEUDOMONAS SYRINGAE EFFECTOR AVRPTO; INNATE IMMUNITY; PLANT PATTERN-RECOGNITION RECEPTOR CONFERS BROAD-SPECTRUM BACTERIAL RESISTANCE; PLANT INNATE IMMUNE RECEPTOR; BACTERIAL VIRULENCE PROTEIN SUPPRESSES HOST INNATE IMMUNITY IN PLANT & ANIMAL SCIENCE

各分類領域比例圖

核心文獻標題	Citation	分類領域
HOST-MICROBE INTERACTIONS: SHAPING THE EVOLUTION OF THE	604	MOLECULAR BIOLOGY &
PLANT IMMUNE RESPONSE	004	GENETICS
PERCEPTION OF THE BACTERIAL PAMP EF-TU BY THE RECEPTOR EFR	297	MOLECULAR BIOLOGY &
RESTRICTS AGROBACTERIUM-MEDIATED TRANSFORMATION	297	GENETICS
A FLAGELLIN-INDUCED COMPLEX OF THE RECEPTOR FLS2 AND BAK1	240	PLANT & ANIMAL
INITIATES PLANT DEFENCE	240	SCIENCE
DIRECT PROTEIN INTERACTION UNDERLIES GENE-FOR-GENE		PLANT & ANIMAL
SPECIFICITY AND COEVOLUTION OF THE FLAX RESISTANCE GENES	206	SCIENCE
AND FLAX RUST AVIRULENCE GENES		JCILIVEL
A RENAISSANCE OF ELICITORS: PERCEPTION OF		PLANT & ANIMAL
MICROBE-ASSOCIATED MOLECULAR PATTERNS AND DANGER	188	SCIENCE
SIGNALS BY PATTERN-RECOGNITION RECEPTORS		JCILIVOL
THE RECEPTOR-LIKE KINASE SERK3/BAK1 IS A CENTRAL REGULATOR	171	PLANT & ANIMAL
OF INNATE IMMUNITY IN PLANTS	1/1	SCIENCE
PLANT CELLS RECOGNIZE CHITIN FRAGMENTS FOR DEFENSE	164	PLANT & ANIMAL
SIGNALING THROUGH A PLASMA MEMBRANE RECEPTOR	104	SCIENCE
CERK1, A LYSM RECEPTOR KINASE, IS ESSENTIAL FOR CHITIN ELICITOR	155	PLANT & ANIMAL


SIGNALING IN ARABIDOPSIS		SCIENCE
A BACTERIAL VIRULENCE PROTEIN SUPPRESSES HOST INNATE	4.40	PLANT & ANIMAL
IMMUNITY TO CAUSE PLANT DISEASE	140	SCIENCE
THE ARABIDOPSIS RECEPTOR KINASE FLS2 BINDS FLG22 AND	420	PLANT & ANIMAL
DETERMINES THE SPECIFICITY OF FLAGELLIN PERCEPTION	129	SCIENCE
BACTERIAL EFFECTORS TARGET THE COMMON SIGNALING PARTNER		
BAK1 TO DISRUPT MULTIPLE MAMP RECEPTOR-SIGNALING	116	MICROBIOLOGY
COMPLEXES AND IMPEDE PLANT IMMUNITY		
A LYSM RECEPTOR-LIKE KINASE PLAYS A CRITICAL ROLE IN CHITIN	111	PLANT & ANIMAL
SIGNALING AND FUNGAL RESISTANCE IN ARABIDOPSIS	114	SCIENCE
A PSEUDOMONAS SYRINGAE EFFECTOR INACTIVATES MAPKS TO	113	MICROBIOLOGY
SUPPRESS PAMP-INDUCED IMMUNITY IN PLANTS	113	WICKOBIOLOGY
PSEUDOMONAS SYRINGAE EFFECTOR AVRPTO BLOCKS INNATE	103	BIOLOGY &
IMMUNITY BY TARGETING RECEPTOR KINASES	105	BIOCHEMISTRY
A BACTERIAL E3 UBIQUITIN LIGASE TARGETS A HOST PROTEIN	98	PLANT & ANIMAL
KINASE TO DISRUPT PLANT IMMUNITY	90	SCIENCE
PHYTOPATHOGEN TYPE III EFFECTOR WEAPONRY AND THEIR PLANT	87	PLANT & ANIMAL
TARGETS	07	SCIENCE
A TYPE III EFFECTOR ADP-RIBOSYLATES RNA-BINDING PROTEINS AND	87	PLANT & ANIMAL
QUELLS PLANT IMMUNITY	07	SCIENCE
RESISTANCE PROTEINS: MOLECULAR SWITCHES OF PLANT DEFENCE	87	PLANT & ANIMAL
RESISTANCE PROTEINS. MOLECULAR SWITCHES OF FLANT DEFENCE	67	SCIENCE
TYPE III EFFECTOR AVRPTOB REQUIRES INTRINSIC E3 UBIQUITIN	82	PLANT & ANIMAL
LIGASE ACTIVITY TO SUPPRESS PLANT CELL DEATH AND IMMUNITY	02	SCIENCE
BREAKING THE BARRIERS: MICROBIAL EFFECTOR MOLECULES	81	PLANT & ANIMAL
SUBVERT PLANT IMMUNITY	01	SCIENCE
FROM GUARD TO DECOY: A NEW MODEL FOR PERCEPTION OF PLANT	81	PLANT & ANIMAL
PATHOGEN EFFECTORS	01	SCIENCE
THE ARABIDOPSIS SOMATIC EMBRYOGENESIS RECEPTOR-LIKE		PLANT & ANIMAL
KINASE1 PROTEIN COMPLEX INCLUDES	81	SCIENCE
BRASSINOSTEROID-INSENSITIVE1		SCIENCE
INDIRECT ACTIVATION OF A PLANT NUCLEOTIDE BINDING	78	PLANT & ANIMAL
SITE-LEUCINE-RICH REPEAT PROTEIN BY A BACTERIAL PROTEASE		SCIENCE
PSEUDOMONAS SYRINGAE EFFECTOR AVRPTOB SUPPRESSES BASAL	74	PLANT & ANIMAL
DEFENCE IN ARABIDOPSIS		SCIENCE
AVRPTOB TARGETS THE LYSM RECEPTOR KINASE CERK1 TO PROMOTE	72	BIOLOGY &
BACTERIAL VIRULENCE ON PLANTS	, <u>-</u>	BIOCHEMISTRY
EARLY EVENTS IN THE PATHOGENICITY OF PSEUDOMONAS SYRINGAE	65	PLANT & ANIMAL
ON NICOTIANA BENTHAMIANA		SCIENCE
A TYPE I-SECRETED, SULFATED PEPTIDE TRIGGERS XA21-MEDIATED	61	PLANT & ANIMAL

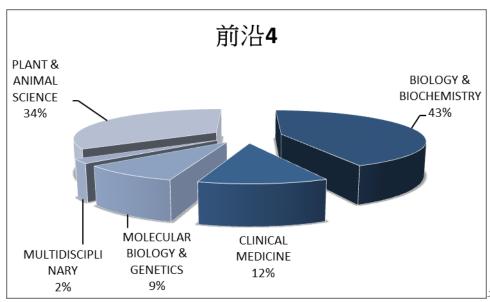
INNATE IMMUNITY		SCIENCE
PSEUDOMONAS SYRINGAE TYPE III SECRETION SYSTEM EFFECTORS: REPERTOIRES IN SEARCH OF FUNCTIONS	59	MICROBIOLOGY
A DRAFT GENOME SEQUENCE OF PSEUDOMONAS SYRINGAE PV. TOMATO T1 REVEALS A TYPE III EFFECTOR REPERTOIRE SIGNIFICANTLY DIVERGENT FROM THAT OF PSEUDOMONAS SYRINGAE PV. TOMATO DC3000	52	PLANT & ANIMAL SCIENCE
THE COILED-COIL AND NUCLEOTIDE BINDING DOMAINS OF THE POTATO RX DISEASE RESISTANCE PROTEIN FUNCTION IN PATHOGEN RECOGNITION AND SIGNALING	43	PLANT & ANIMAL SCIENCE
A RECEPTOR-LIKE CYTOPLASMIC KINASE, BIK1, ASSOCIATES WITH A FLAGELLIN RECEPTOR COMPLEX TO INITIATE PLANT INNATE IMMUNITY	40	PLANT & ANIMAL SCIENCE
DIFFERENTIAL INNATE IMMUNE SIGNALLING VIA CA2+ SENSOR PROTEIN KINASES	40	PLANT & ANIMAL SCIENCE
RECEPTOR-LIKE CYTOPLASMIC KINASES INTEGRATE SIGNALING FROM MULTIPLE PLANT IMMUNE RECEPTORS AND ARE TARGETED BY A PSEUDOMONAS SYRINGAE EFFECTOR	38	MICROBIOLOGY
NUCLEAR PORE COMPLEX COMPONENT MOS7/NUP88 IS REQUIRED FOR INNATE IMMUNITY AND NUCLEAR ACCUMULATION OF DEFENSE REGULATORS IN ARABIDOPSIS	35	PLANT & ANIMAL SCIENCE
RAPID HETEROMERIZATION AND PHOSPHORYLATION OF LIGAND-ACTIVATED PLANT TRANSMEMBRANE RECEPTORS AND THEIR ASSOCIATED KINASE BAK1	34	BIOLOGY & BIOCHEMISTRY
ONE FOR ALL: THE RECEPTOR-ASSOCIATED KINASE BAK1	34	PLANT & ANIMAL SCIENCE
INTERFAMILY TRANSFER OF A PLANT PATTERN-RECOGNITION RECEPTOR CONFERS BROAD-SPECTRUM BACTERIAL RESISTANCE	30	BIOLOGY & BIOCHEMISTRY
NB-LRRS WORK A "BAIT AND SWITCH" ON PATHOGENS	30	PLANT & ANIMAL SCIENCE
CONSERVED FUNGAL LYSM EFFECTOR ECP6 PREVENTS CHITIN-TRIGGERED IMMUNITY IN PLANTS	26	PLANT & ANIMAL SCIENCE
NB-LRR PROTEINS: PAIRS, PIECES, PERCEPTION, PARTNERS, AND PATHWAYS	19	PLANT & ANIMAL SCIENCE
EARLY SIGNALING THROUGH THE ARABIDOPSIS PATTERN RECOGNITION RECEPTORS FLS2 AND EFR INVOLVES CA2+-ASSOCIATED OPENING OF PLASMA MEMBRANE ANION CHANNELS	19	PLANT & ANIMAL SCIENCE
TWO LYSM RECEPTOR MOLECULES, CEBIP AND OSCERK1, COOPERATIVELY REGULATE CHITIN ELICITOR SIGNALING IN RICE	16	PLANT & ANIMAL SCIENCE

PEPR2 IS A SECOND RECEPTOR FOR THE PEP1 AND PEP2 PEPTIDES AND CONTRIBUTES TO DEFENSE RESPONSES IN ARABIDOPSIS	16	PLANT & ANIMAL SCIENCE
RANGAP2 MEDIATES NUCLEOCYTOPLASMIC PARTITIONING OF THE NB-LRR IMMUNE RECEPTOR RX IN THE SOLANACEAE, THEREBY DICTATING RX FUNCTION	10	PLANT & ANIMAL SCIENCE
SPECIFIC THREONINE PHOSPHORYLATION OF A HOST TARGET BY TWO UNRELATED TYPE III EFFECTORS ACTIVATES A HOST INNATE IMMUNE RECEPTOR IN PLANTS	9	MICROBIOLOGY
A RECEPTOR-LIKE CYTOPLASMIC KINASE PHOSPHORYLATES THE HOST TARGET RIN4, LEADING TO THE ACTIVATION OF A PLANT INNATE IMMUNE RECEPTOR	9	MICROBIOLOGY
NUCLEOCYTOPLASMIC DISTRIBUTION IS REQUIRED FOR ACTIVATION OF RESISTANCE BY THE POTATO NB-LRR RECEPTOR RX1 AND IS BALANCED BY ITS FUNCTIONAL DOMAINS	9	PLANT & ANIMAL SCIENCE
DIFFERENT ROLES OF ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) BOUND TO AND DISSOCIATED FROM PHYTOALEXIN DEFICIENT4 (PAD4) IN ARABIDOPSIS IMMUNITY	7	PLANT & ANIMAL SCIENCE

動植物前沿三

ASYMMETRIC COEVOLUTIONARY NETWORKS; BIODIVERSITY MAINTENANCE; GRASSLAND COMMUNITIES REQUIRES HIGHER BIODIVERSITY; FUNCTIONAL BIODIVERSITY RESEARCH; BIODIVERSITY EFFECTS; BIODIVERSITY IMPROVES WATER QUALITY IN PLANT & ANIMAL SCIENCE

各分類領域比例圖


核心文獻標題	Citation	分類領域
EFFECTS OF BIODIVERSITY ON THE FUNCTIONING OF TROPHIC	334	ENVIRONMENT/ECOLOGY
GROUPS AND ECOSYSTEMS		·
QUANTIFYING THE EVIDENCE FOR BIODIVERSITY EFFECTS ON	328	ENVIRONMENT/ECOLOGY
ECOSYSTEM FUNCTIONING AND SERVICES		
BIODIVERSITY AND ECOSYSTEM STABILITY IN A DECADE-LONG	223	ENVIRONMENT/ECOLOGY
GRASSLAND EXPERIMENT		
ASYMMETRIC COEVOLUTIONARY NETWORKS FACILITATE	179	ENVIRONMENT/ECOLOGY
BIODIVERSITY MAINTENANCE		
IMPACTS OF PLANT DIVERSITY ON BIOMASS PRODUCTION INCREASE	175	ENVIRONMENT/ECOLOGY
THROUGH TIME BECAUSE OF SPECIES COMPLEMENTARITY		
ECOLOGICAL NETWORKS AND THEIR FRAGILITY	160	ENVIRONMENT/ECOLOGY
STRUCTURAL ASYMMETRY AND THE STABILITY OF DIVERSE FOOD	146	ENVIRONMENT/ECOLOGY
WEBS		
PLANT-ANIMAL MUTUALISTIC NETWORKS: THE ARCHITECTURE OF	139	ENVIRONMENT/ECOLOGY
BIODIVERSITY		
STABILITY AND DIVERSITY OF ECOSYSTEMS	131	ENVIRONMENT/ECOLOGY
THE FUNCTIONAL ROLE OF BIODIVERSITY IN ECOSYSTEMS:	116	ENVIRONMENT/ECOLOGY

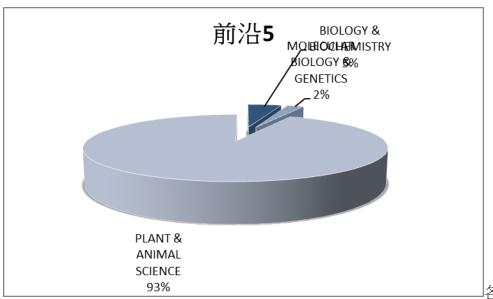
INCORPORATING TROPHIC COMPLEXITY		
BIODIVERSITY AND ECOSYSTEM MULTIFUNCTIONALITY	111	ENVIRONMENT/ECOLOGY
A NEW ALGORITHM TO CALCULATE THE NESTEDNESS TEMPERATURE	110	ENVIRONMENT/ECOLOGY
OF PRESENCE-ABSENCE MATRICES		
A CONSISTENT METRIC FOR NESTEDNESS ANALYSIS IN ECOLOGICAL	90	ENVIRONMENT/ECOLOGY
SYSTEMS: RECONCILING CONCEPT AND MEASUREMENT		
THE MODULARITY OF POLLINATION NETWORKS	88	ENVIRONMENT/ECOLOGY
SIZE, FORAGING, AND FOOD WEB STRUCTURE	87	ENVIRONMENT/ECOLOGY
ECOLOGICAL NETWORKS - BEYOND FOOD WEBS	84	PLANT & ANIMAL
		SCIENCE
NULL MODEL ANALYSIS OF SPECIES NESTEDNESS PATTERNS	81	ENVIRONMENT/ECOLOGY
IMPROVING THE ANALYSES OF NESTEDNESS FOR LARGE SETS OF	75	COMPUTER SCIENCE
MATRICES		
CONSEQUENCES OF DOMINANCE: A REVIEW OF EVENNESS EFFECTS	72	ENVIRONMENT/ECOLOGY
ON LOCAL AND REGIONAL ECOSYSTEM PROCESSES		
UNDERSTANDING THE EFFECTS OF MARINE BIODIVERSITY ON	69	ENVIRONMENT/ECOLOGY
COMMUNITIES AND ECOSYSTEMS		
ALLOMETRIC DEGREE DISTRIBUTIONS FACILITATE FOOD-WEB	65	ENVIRONMENT/ECOLOGY
STABILITY		
A CONSUMER'S GUIDE TO NESTEDNESS ANALYSIS	61	ENVIRONMENT/ECOLOGY
THE ARCHITECTURE OF MUTUALISTIC NETWORKS MINIMIZES	56	ENVIRONMENT/ECOLOGY
COMPETITION AND INCREASES BIODIVERSITY		
EMERGING HORIZONS IN BIODIVERSITY AND ECOSYSTEM	49	ENVIRONMENT/ECOLOGY
FUNCTIONING RESEARCH		
UNITING PATTERN AND PROCESS IN PLANT-ANIMAL MUTUALISTIC	46	PLANT & ANIMAL
NETWORKS: A REVIEW		SCIENCE
WHY BIODIVERSITY IS IMPORTANT TO THE FUNCTIONING OF	44	ENVIRONMENT/ECOLOGY
REAL-WORLD ECOSYSTEMS		
BIODIVERSITY IN A COMPLEX WORLD: CONSOLIDATION AND	44	ENVIRONMENT/ECOLOGY
PROGRESS IN FUNCTIONAL BIODIVERSITY RESEARCH		
SIMPLE PREDICTION OF INTERACTION STRENGTHS IN COMPLEX	43	ENVIRONMENT/ECOLOGY
FOOD WEBS		
BIODIVERSITY, ECOSYSTEM FUNCTIONING AND FOOD WEBS IN	29	PLANT & ANIMAL
FRESH WATERS: ASSEMBLING THE JIGSAW PUZZLE		SCIENCE
RESOURCE QUALITY AND STOICHIOMETRIC CONSTRAINTS ON	28	PLANT & ANIMAL
STREAM ECOSYSTEM FUNCTIONING		SCIENCE
STABILITY OF ECOLOGICAL COMMUNITIES AND THE ARCHITECTURE	24	ENVIRONMENT/ECOLOGY
OF MUTUALISTIC AND TROPHIC NETWORKS		
SUSTAINING MULTIPLE ECOSYSTEM FUNCTIONS IN GRASSLAND	22	ENVIRONMENT/ECOLOGY
COMMUNITIES REQUIRES HIGHER BIODIVERSITY		

NESTEDNESS VERSUS MODULARITY IN ECOLOGICAL NETWORKS:	16	PLANT & ANIMAL
TWO SIDES OF THE SAME COIN?		SCIENCE
BIODIVERSITY IMPROVES WATER QUALITY THROUGH NICHE	11	ENVIRONMENT/ECOLOGY
PARTITIONING		
THE FUNCTIONAL ROLE OF PRODUCER DIVERSITY IN ECOSYSTEMS	10	PLANT & ANIMAL
		SCIENCE
HIGH PLANT DIVERSITY IS NEEDED TO MAINTAIN ECOSYSTEM	8	ENVIRONMENT/ECOLOGY
SERVICES		

動植物前沿四

ZINC-FINGER NUCLEASES; ENGINEERED ZINC-FINGER NUCLEASES; ENGINEERED ZINC FINGER NUCLEASES; DESIGNED ZINC-FINGER NUCLEASES; CUSTOM-DESIGNED ZINC FINGER NUCLEASES IN PLANT & ANIMAL SCIENCE

各分類領域比例圖


7次心又隔//月中		
核心文獻標題	Citation	分類領域
GENE EDITING IN HUMAN STEM CELLS USING ZINC FINGER	199	BIOLOGY &
NUCLEASES AND INTEGRASE-DEFECTIVE LENTIVIRAL VECTOR		BIOCHEMISTRY
DELIVERY		
HERITABLE TARGETED GENE DISRUPTION IN ZEBRAFISH USING	189	BIOLOGY &
DESIGNED ZINC-FINGER NUCLEASES		BIOCHEMISTRY
TARGETED GENE INACTIVATION IN ZEBRAFISH USING ENGINEERED	179	BIOLOGY &
ZINC-FINGER NUCLEASES		BIOCHEMISTRY
AN IMPROVED ZINC-FINGER NUCLEASE ARCHITECTURE FOR HIGHLY	162	BIOLOGY &
SPECIFIC GENOME EDITING		BIOCHEMISTRY
ESTABLISHMENT OF HIV-1 RESISTANCE IN CD4(+) T CELLS BY	149	BIOLOGY &
GENOME EDITING USING ZINC-FINGER NUCLEASES		BIOCHEMISTRY
EFFICIENT TARGETING OF EXPRESSED AND SILENT GENES IN HUMAN	139	BIOLOGY &
ESCS AND IPSCS USING ZINC-FINGER NUCLEASES		BIOCHEMISTRY
LONG-TERM CONTROL OF HIV BY CCR5 DELTA32/DELTA32 STEM-CELL	123	CLINICAL MEDICINE
TRANSPLANTAION		
KNOCKOUT RATS VIA EMBRYO MICROINJECTION OF ZINC-FINGER	121	MOLECULAR BIOLOGY &
NUCLEASES		GENETICS

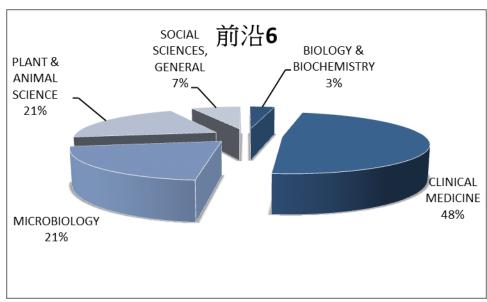
GENE TARGETING OF A DISEASE-RELATED GENE IN HUMAN INDUCED	118	CLINICAL MEDICINE
PLURIPOTENT STEM AND EMBRYONIC STEM CELLS		
STRUCTURE-BASED REDESIGN OF THE DIMERIZATION INTERFACE	112	BIOLOGY &
REDUCES THE TOXICITY OF ZINC-FINGER NUCLEASES		BIOCHEMISTRY
A BACTERIAL EFFECTOR ACTS AS A PLANT TRANSCRIPTION FACTOR	108	PLANT & ANIMAL
AND INDUCES A CELL SIZE REGULATOR		SCIENCE
TARGETED GENE KNOCKOUT IN MAMMALIAN CELLS BY USING	95	BIOLOGY &
ENGINEERED ZINC-FINGER NUCLEASES		BIOCHEMISTRY
PRECISE GENOME MODIFICATION IN THE CROP SPECIES ZEA MAYS	93	PLANT & ANIMAL
USING ZINC-FINGER NUCLEASES		SCIENCE
GENOME EDITING WITH ENGINEERED ZINC FINGER NUCLEASES	87	MOLECULAR BIOLOGY &
DI ANT DATIGOCAL DEGOCALITION MEDIATED DV DDOMOTED	07	GENETICS
PLANT PATHOGEN RECOGNITION MEDIATED BY PROMOTER	87	PLANT & ANIMAL
ACTIVATION OF THE PEPPER BS3 RESISTANCE GENE		SCIENCE
HIGH-FREQUENCY MODIFICATION OF PLANT GENES USING	86	PLANT & ANIMAL
ENGINEERED ZINC-FINGER NUCLEASES		SCIENCE
ZINC-FINGER NUCLEASES: THE NEXT GENERATION EMERGES	86	CLINICAL MEDICINE
BREAKING THE CODE OF DNA BINDING SPECIFICITY OF TAL-TYPE III	83	PLANT & ANIMAL
EFFECTORS		SCIENCE
OS8N3 IS A HOST DISEASE-SUSCEPTIBILITY GENE FOR BACTERIAL	81	PLANT & ANIMAL
BLIGHT OF RICE		SCIENCE
A SIMPLE CIPHER GOVERNS DNA RECOGNITION BY TAL EFFECTORS	68	BIOLOGY &
		BIOCHEMISTRY
RAPID MUTATION OF ENDOGENOUS ZEBRAFISH GENES USING ZINC	62	CLINICAL MEDICINE
FINGER NUCLEASES MADE BY OLIGOMERIZED POOL ENGINEERING (OPEN)		
HUMAN HEMATOPOIETIC STEM/PROGENITOR CELLS MODIFIED BY	47	BIOLOGY &
ZINC-FINGER NUCLEASES TARGETED TO CCR5 CONTROL HIV-1 IN	47	BIOCHEMISTRY
VIVO		BIOCHEWISTRY
A TALE NUCLEASE ARCHITECTURE FOR EFFICIENT GENOME EDITING	40	BIOLOGY &
		BIOCHEMISTRY
GENERATION OF KNOCKOUT RATS WITH X-LINKED SEVERE	37	CLINICAL MEDICINE
COMBINED IMMUNODEFICIENCY (X-SCID) USING ZINC-FINGER		
NUCLEASES		
RNA-BASED GENE THERAPY FOR HIV WITH LENTIVIRAL	34	MOLECULAR BIOLOGY &
VECTOR-MODIFIED CD34(+) CELLS IN PATIENTS UNDERGOING		GENETICS
TRANSPLANTATION FOR AIDS-RELATED LYMPHOMA		
SUGAR TRANSPORTERS FOR INTERCELLULAR EXCHANGE AND	33	PLANT & ANIMAL
NUTRITION OF PATHOGENS		SCIENCE
HIGH FREQUENCY TARGETED MUTAGENESIS IN ARABIDOPSIS	29	PLANT & ANIMAL

THALIANA USING ZINC FINGER NUCLEASES		SCIENCE
THE TYPE III EFFECTORS OF XANTHOMONAS	28	PLANT & ANIMAL
		SCIENCE
TAL NUCLEASES (TALNS): HYBRID PROTEINS COMPOSED OF TAL	27	BIOLOGY &
EFFECTORS AND FOKI DNA-CLEAVAGE DOMAIN		BIOCHEMISTRY
SELECTION-FREE ZINC-FINGER-NUCLEASE ENGINEERING BY	27	MULTIDISCIPLINARY
CONTEXT-DEPENDENT ASSEMBLY (CODA)		
XANTHOMONAS AVRBS3 FAMILY-TYPE III EFFECTORS: DISCOVERY	26	PLANT & ANIMAL
AND FUNCTION		SCIENCE
EFFICIENT CONSTRUCTION OF SEQUENCE-SPECIFIC TAL EFFECTORS	25	BIOLOGY &
FOR MODULATING MAMMALIAN TRANSCRIPTION		BIOCHEMISTRY
TAL EFFECTORS: FINDING PLANT GENES FOR DISEASE AND DEFENSE	23	PLANT & ANIMAL
		SCIENCE
SITE-DIRECTED MUTAGENESIS IN ARABIDOPSIS USING	23	PLANT & ANIMAL
CUSTOM-DESIGNED ZINC FINGER NUCLEASES		SCIENCE
EFFICIENT DESIGN AND ASSEMBLY OF CUSTOM TALEN AND OTHER	20	BIOLOGY &
TAL EFFECTOR-BASED CONSTRUCTS FOR DNA TARGETING		BIOCHEMISTRY
ENHANCING ZINC-FINGER-NUCLEASE ACTIVITY WITH IMPROVED	19	BIOLOGY &
OBLIGATE HETERODIMERIC ARCHITECTURES		BIOCHEMISTRY
PROMOTER ELEMENTS OF RICE SUSCEPTIBILITY GENES ARE BOUND	17	PLANT & ANIMAL
AND ACTIVATED BY SPECIFIC TAL EFFECTORS FROM THE BACTERIAL		SCIENCE
BLIGHT PATHOGEN, XANTHOMONAS ORYZAE PV. ORYZAE		
REGULATION OF SELECTED GENOME LOCI USING DE	17	PLANT & ANIMAL
NOVO-ENGINEERED TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR		SCIENCE
(TALE)-TYPE TRANSCRIPTION FACTORS		
ZINC-FINGER NUCLEASE BASED GENOME SURGERY: IT'S ALL ABOUT	15	MOLECULAR BIOLOGY &
SPECIFICITY		GENETICS
GENETIC ENGINEERING OF HUMAN PLURIPOTENT CELLS USING TALE	14	BIOLOGY &
NUCLEASES		BIOCHEMISTRY
DE NOVO-ENGINEERED TRANSCRIPTION ACTIVATOR-LIKE EFFECTOR	12	BIOLOGY &
(TALE) HYBRID NUCLEASE WITH NOVEL DNA BINDING SPECIFICITY		BIOCHEMISTRY
CREATES DOUBLE-STRAND BREAKS		
ZINC FINGER PROTEIN-DEPENDENT AND -INDEPENDENT	11	BIOLOGY &
CONTRIBUTIONS TO THE IN VIVO OFF-TARGET ACTIVITY OF ZINC		BIOCHEMISTRY
FINGER NUCLEASES		
AUTONOMOUS ZINC-FINGER NUCLEASE PAIRS FOR TARGETED	10	BIOLOGY &
CHROMOSOMAL DELETION		BIOCHEMISTRY
RICE XA13 RECESSIVE RESISTANCE TO BACTERIAL BLIGHT IS	8	PLANT & ANIMAL
DEFEATED BY INDUCTION OF THE DISEASE SUSCEPTIBILITY GENE		SCIENCE
OS-11N3		

動植物前沿五

TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID-ACTIVATED PROTEIN KINASES; ABSCISIC ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES; ABSCISIC ACID SIGNALING IN-VIVO; ABSCISIC ACID RECEPTOR PYR1; ABSCISIC ACID RECEPTOR PYL5 IN PLANT & ANIMAL SCIENCE

各分類領域比例圖


核心文獻標題	Citation	分類領域
ABSCISIC ACID INHIBITS TYPE 2C PROTEIN PHOSPHATASES VIA THE	220	PLANT & ANIMAL
PYR/PYL FAMILY OF START PROTEINS		SCIENCE
REGULATORS OF PP2C PHOSPHATASE ACTIVITY FUNCTION AS	202	PLANT & ANIMAL
ABSCISIC ACID SENSORS		SCIENCE
THE MG-CHELATASE H SUBUNIT IS AN ABSCISIC ACID RECEPTOR	179	PLANT & ANIMAL
		SCIENCE
TWO NOVEL GPCR-TYPE G PROTEINS ARE ABSCISIC ACID RECEPTORS	122	MOLECULAR BIOLOGY &
IN ARABIDOPSIS		GENETICS
IN VITRO RECONSTITUTION OF AN ABSCISIC ACID SIGNALLING	112	PLANT & ANIMAL
PATHWAY		SCIENCE
ABSCISIC ACID: EMERGENCE OF A CORE SIGNALING NETWORK	111	PLANT & ANIMAL
		SCIENCE
SLAC1 IS REQUIRED FOR PLANT GUARD CELL S-TYPE ANION CHANNEL	109	PLANT & ANIMAL
FUNCTION IN STOMATAL SIGNALLING		SCIENCE
A G PROTEIN-COUPLED RECEPTOR IS A PLASMA MEMBRANE	91	PLANT & ANIMAL
RECEPTOR FOR THE PLANT HORMONE ABSCISIC ACID		SCIENCE
IDENTIFICATION OF TWO PROTEIN KINASES REQUIRED FOR ABSCISIC	88	PLANT & ANIMAL
ACID REGULATION OF SEED GERMINATION, ROOT GROWTH, AND		SCIENCE
GENE EXPRESSION IN ARABIDOPSIS		

ABSCISIC ACID RECEPTORS COZ REGULATOR SLACI AND ITS HOMOLOGUES ARE ESSENTIAL FOR 83 PLANT & ANIMAL ANION HOMEOSTASIS IN PLANT CELLS STRUCTURAL BASIS OF ABSCISIC ACID SIGNALLING 82 PLANT & ANIMAL SCIENCE STRUCTURAL MECHANISM OF ABSCISIC ACID BINDING AND 78 PLANT & ANIMAL SCIENCE STRUCTURAL MECHANISM OF ABSCISIC ACID BINDING AND 78 PLANT & ANIMAL SCIENCE STRUCTURAL MECHANISM OF ABSCISIC ACID BINDING AND 78 PLANT & ANIMAL SCIENCE SIGNALING BY DIMERIC PYRI SCIENCE SIGNALING BY DIMERIC PYRI SCIENCE TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC 76 PLANT & ANIMAL ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS SCIENCE ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED 73 PLANT & ANIMAL SCIENCE REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYRI IN COMPLEX WITH ABSCISIC 73 PLANT & ANIMAL SCIENCE ACTIVITY OF GUARD CELL ANION CHANNEL SLACI IS CONTROLLED BY 72 PLANT & ANIMAL SCIENCE A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION 64 PLANT & ANIMAL CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN 63 PLANT & ANIMAL UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING SCIENCE GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN 63 PLANT & ANIMAL SCIENCE THREE ARABIDOPSIS SNIK2 PROTEIN KINASES, SIRK2D/SNIK2.2, 61 PLANT & ANIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID 60 PLANT & ANIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID 59 BIOLOGY & BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE 53 PLANT & ANIMAL SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID 59 BIOLOGY & BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE 53 PLANT & ANIMAL SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT	A GATE-LATCH-LOCK MECHANISM FOR HORMONE SIGNALLING BY	83	PLANT & ANIMAL
ANION HOMEOSTASIS IN PLANT CELLS STRUCTURAL BASIS OF ABSCISIC ACID SIGNALLING STRUCTURAL MECHANISM OF ABSCISIC ACID BINDING AND SIGNALING BY DIMERIC PYR1 SCIENCE TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED PROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH, REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID GENETIC PLANT & ANIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID BY PLANT & ANIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOLOGY & BIOLOGY	ABSCISIC ACID RECEPTORS		SCIENCE
STRUCTURAL BASIS OF ABSCISIC ACID SIGNALLING STRUCTURAL MECHANISM OF ABSCISIC ACID BINDING AND SIGNALING BY DIMERIC PYPT I SCIENCE TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED PROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH, REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACTIVITY OF GUARD CELL ANION CHANNEL SLACT IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLACT IS CONTROLLED BY APROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION APROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID FOR PLANT & ANIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY STRUCTURAL SAMIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY STRUCTURAL SAMIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY SAMIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY SAMIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY SAMIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY SAMIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY SAMIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY SAMIMAL SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPENDLY SAMIMAL SCIENCE STRUCTURAL SAMIMAL SCIENCE SCIENCE STRUCTURAL SAMIMAL SC	CO2 REGULATOR SLAC1 AND ITS HOMOLOGUES ARE ESSENTIAL FOR	83	PLANT & ANIMAL
SCIENCE STRUCTURAL MECHANISM OF ABSCISIC ACID BINDING AND SIGNALING BY DIMERIC PYR1 TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC TOPE 2C PROTEIN PHOSPHATASES IN ARABIDOPSIS SCIENCE TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS SCIENCE RABBIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED TOPE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACTIVITY OF GUARD CELL ANION CHANNEL SLACI IS CONTROLLED BY ACID ACTIVITY OF GUARD CELL ANION CHANNEL SLACI IS CONTROLLED BY APROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN GUARD C	ANION HOMEOSTASIS IN PLANT CELLS		SCIENCE
STRUCTURAL MECHANISM OF ABSCISIC ACID BINDING AND SIGNALING BY DIMERIC PYR1 SCIENCE TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED PROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH, REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY DROUGHT-STRESS SIGNALING KINASE-PHOSPHATASE PAIR A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION 64 PLANT & ANIMAL SCIENCE GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN 63 PLANT & ANIMAL SCIENCE GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN 63 PLANT & ANIMAL SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, 61 PLANT & ANIMAL SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, 61 PLANT & ANIMAL SCIENCE STEUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOLOGY & BIOL	STRUCTURAL BASIS OF ABSCISIC ACID SIGNALLING	82	PLANT & ANIMAL
SCIENCE TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS SCIENCE RABBIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED ROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH, SCIENCE REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACID SCIENCE ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACID CACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY APROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION APPOTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION APPOTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING CHANNEL TO REGULATE ABA SIGNALING SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, 61 PLANT & ANIMAL SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, 61 PLANT & ANIMAL SCIENCE THREE ARABIDOPSIS INTREACTS WITH ABSCISIC ACID SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID SCIENCE SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPICAL BE BIOLOGY & SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE STRUCTURAL KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 47 PROTEIN PHOSPHATASES ARE THE MAIN POSITIVE 48 PLANT & ANIMAL SCIENCE STRUCTURAL ANIMAL SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 49 PLANT & ANIMAL SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 40 PLANT & ANIMAL SCIENCE SCIENCE THAT & ANIMAL SCIENCE SCIEN			SCIENCE
TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS SCIENCE ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED ACID-ACTIVATED PROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH, REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACID COMPLEX WITH ABSCISIC ACID WITH ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACID COMPLEX WITH ABSCISIC ACID WITH ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY DROUGHT-STRESS SIGNALING KINASE-PHOSPHATASE PAIR CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, 61 PLANT & ANIMAL SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE STRUCTURAL KINSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SPLANT & ANIMAL SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS SCIENCE THERE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL SCIENCE THERE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 47 PLANT & ANIMAL SCIENCE THERE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 48 PLANT & ANIMAL SCIENCE THERE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 49 PLANT & ANIMAL SCIENCE THERE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 40 PLANT & ANIMAL SCIENCE THERE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 41 PLANT & ANIMAL SCIENCE THERE SNRK2 PROTEIN KINASES ARE THE M	STRUCTURAL MECHANISM OF ABSCISIC ACID BINDING AND	78	PLANT & ANIMAL
ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED PROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH, REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACID ACTIVITY OF GUARD CELL ANION CHANNEL SLACI IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLACI IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLACI IS CONTROLLED BY APROTEIN KINASE-PHOSPHATASE PAIR SCIENCE A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN SCIENCE THREE ARABIDOPSIS SNRV2 PROTEIN KINASES, SRK2D/SNRK2.2, THREE ARABIDOPSIS SNRV2 PROTEIN KINASES, SRK2D/SNRK2.2, GI PLANT & ANIMAL SCIENCE THREE ARABIDOPSIS SNRV2 PROTEIN KINASES, SRK2D/SNRK2.2, GI PLANT & ANIMAL SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID FOR PLANT & ANIMAL RECEPTOR PYLS THROUGH INHIBITION OF CLADE A PP2CS SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID FOR PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SIGNALING BY PYL PROTEINS BIOLOGY & SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE ACIENCE THERE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE ACIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA PERCEPTION AND SIGNALLING IN RESPONSE TO WATER SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	SIGNALING BY DIMERIC PYR1		SCIENCE
ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED PROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH, REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY APPOTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION APPOTEIN CONTROL OF SEID CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS SCIENCE GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN APPOTEIN SEID CONTROL OF SEID CELLS THREE ARABIDOPSIS SNRY2 PROTEIN KINASES, SRY2D/SNRY2.2, APPOTEIN CHANNEL TO REAL ANIMAL SCIENCE THREE ARABIDOPSIS SNRY2 PROTEIN KINASES, SRY2D/SNRY2.2, APPOTEIN PHOSPHATASES SUBJECT OF THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID BOOLOGY & SIGNALING BY PYL PROTEINS BIOLOGY &	TYPE 2C PROTEIN PHOSPHATASES DIRECTLY REGULATE ABSCISIC	76	PLANT & ANIMAL
PROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH, REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACID ACID ACID ACID ACID ACID ACITIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACID BOUGHT-STRESS SIGNALING KINASE-PHOSPHATASE PAIR APPOTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION APPOTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION APPOTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN AUDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, BLANT & ANIMAL SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, BLANT & ANIMAL SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID BOULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID BOULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING IN RESPONSE TO WATER SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE ABA PERCEPTION AND SIGNALLING IN RESPONSE TO WATER SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED AS PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED AS PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED AS PLANT & ANIMAL SCIENCE AND PLANT & ANIMAL SCIENCE	ACID-ACTIVATED PROTEIN KINASES IN ARABIDOPSIS		SCIENCE
REPRODUCTION, AND STRESS THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACID SCIENCE ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY A PROTEIN KINASE-PHOSPHATASE PAIR BROUGHT-STRESS SIGNALING KINASE-PHOSPHATASE PAIR A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PLANT & ANIMAL CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN BUANT & ANIMAL UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, ANIMAL SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, ANIMAL SCIENCE SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, ANIMAL SCIENCE SCIENCE SCIENCE SCIENCE SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID AND PLANT & ANIMAL SCIENCE THREE SNRK2 PROTEINS BIOCHEMISTRY BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE STRUCTURAL KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE ABA PERCEPTION AND SIGNALLING AS PLANT & ANIMAL SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE ABA PERCEPTION AND SIGNALLING AS PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA PERCEPTION, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	ARABIDOPSIS MUTANT DEFICIENT IN 3 ABSCISIC ACID-ACTIVATED	73	PLANT & ANIMAL
THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC ACID ACID ACID ACITIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY A PROTEIN KINASE-PHOSPHATASE PAIR SCIENCE A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, ASIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID FROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE STRUCTURAL KINASES OST1 BY ABSCISIC ACID IN ARABIDOPSIS SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE THERE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE AGA PERCEPTION AND SIGNALLING ABA PERCEPTION AND SIGNALLING ABA PERCEPTION AND SIGNALLING ABA PERCEPTION AND SIGNALLING ABA PERCEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	PROTEIN KINASES REVEALS CRITICAL ROLES IN GROWTH,		SCIENCE
ACID ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY A PROTEIN KINASE-PHOSPHATASE PAIR SCIENCE A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN GUARD CELL SIGNAL TRANSDUCTION OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID GUARD CELL SIGNAL TRANSDUCTION OF CLADE A PP2CS SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOLOGY & B	REPRODUCTION, AND STRESS		
ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY 72 PLANT & ANIMAL DROUGHT-STRESS SIGNALING KINASE-PHOSPHATASE PAIR SCIENCE A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION 64 PLANT & ANIMAL CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS SCIENCE GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN 63 PLANT & ANIMAL UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, 61 PLANT & ANIMAL SRK2E/SNRK2.6/OST1 AND SRK2I/SNRK2.3, INVOLVED IN ABA SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID 60 PLANT & ANIMAL RECEPTOR PYLS THROUGH INHIBITION OF CLADE A PP2CS SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID 59 BIOLOGY &	THE ABSCISIC ACID RECEPTOR PYR1 IN COMPLEX WITH ABSCISIC	73	PLANT & ANIMAL
DROUGHT-STRESS SIGNALING KINASE-PHOSPHATASE PAIR A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN GUARD CELL SIGNAL TRANSDUCTI	ACID		SCIENCE
A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN GUARD CELL SIGNAL TRANSDUCTION OF SEED DEVELOPS SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID GUARD CELL SIGNAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOLOGY & SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SUBJECT OF THE SUBJEC	ACTIVITY OF GUARD CELL ANION CHANNEL SLAC1 IS CONTROLLED BY	72	PLANT & ANIMAL
CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING SCIENCE THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, 61 PLANT & ANIMAL SRK2E/SNRK2.6/OST1 AND SRK2I/SNRK2.3, INVOLVED IN ABA SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE AG PLANT & ANIMAL REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER SCIENCE THRES IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	DROUGHT-STRESS SIGNALING KINASE-PHOSPHATASE PAIR		SCIENCE
GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, SRK2E/SNRK2.6/OST1 AND SRK2I/SNRK2.3, INVOLVED IN ABA SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE ABA PERCEPTION AND SIGNALLING GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	A PROTEIN KINASE-PHOSPHATASE PAIR INTERACTS WITH AN ION	64	PLANT & ANIMAL
UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, SRK2E/SNRK2.6/OST1 AND SRK2I/SNRK2.3, INVOLVED IN ABA SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOLOGY & BIOLOGY & BIOLOGY & BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE ABA PERCEPTION AND SIGNALLING IN RESPONSE TO WATER SCIENCE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	CHANNEL TO REGULATE ABA SIGNALING IN PLANT GUARD CELLS		SCIENCE
THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2, SRK2E/SNRK2.6/OST1 AND SRK2I/SNRK2.3, INVOLVED IN ABA SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID FRECEPTOR PYL5 THROUGH INHIBITION OF CLADE A PP2CS SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE ABA PERCEPTION AND SIGNALLING GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	GUARD CELL SIGNAL TRANSDUCTION NETWORK: ADVANCES IN	63	PLANT & ANIMAL
SRK2E/SNRK2.6/OST1 AND SRK2I/SNRK2.3, INVOLVED IN ABA SCIENCE SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID RECEPTOR PYL5 THROUGH INHIBITION OF CLADE A PP2CS SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE SCIENCE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING IN RESPONSE TO WATER SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	UNDERSTANDING ABSCISIC ACID, CO2, AND CA2+ SIGNALING		SCIENCE
SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID 60 PLANT & ANIMAL RECEPTOR PYL5 THROUGH INHIBITION OF CLADE A PP2CS SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID 59 BIOLOGY & SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE 53 PLANT & ANIMAL SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING 45 PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED 45 PLANT & ANIMAL ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	THREE ARABIDOPSIS SNRK2 PROTEIN KINASES, SRK2D/SNRK2.2,	61	PLANT & ANIMAL
DEVELOPMENT AND DORMANCY MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID 60 PLANT & ANIMAL RECEPTOR PYL5 THROUGH INHIBITION OF CLADE A PP2CS SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID 59 BIOLOGY & SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE 53 PLANT & ANIMAL SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER SCIENCE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING 45 PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED 45 PLANT & ANIMAL ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	SRK2E/SNRK2.6/OST1 AND SRK2I/SNRK2.3, INVOLVED IN ABA		SCIENCE
MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID RECEPTOR PYL5 THROUGH INHIBITION OF CLADE A PP2CS SCIENCE STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	SIGNALING ARE ESSENTIAL FOR THE CONTROL OF SEED		
RECEPTOR PYL5 THROUGH INHIBITION OF CLADE A PP2CS STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER SCIENCE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	DEVELOPMENT AND DORMANCY		
STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID SIGNALING BY PYL PROTEINS BIOCHEMISTRY PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE SCIENCE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING ABA PERCEPTION AND SIGNALLING GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	MODULATION OF DROUGHT RESISTANCE BY THE ABSCISIC ACID	60	PLANT & ANIMAL
SIGNALING BY PYL PROTEINS PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE 53 PLANT & ANIMAL SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER 5CIENCE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING 45 PLANT & ANIMAL 5CIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED 45 ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION 5CIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	RECEPTOR PYL5 THROUGH INHIBITION OF CLADE A PP2CS		SCIENCE
PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE 53 PLANT & ANIMAL SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS SCIENCE THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE 46 PLANT & ANIMAL REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER SCIENCE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING 45 PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED 45 PLANT & ANIMAL ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	STRUCTURAL INSIGHTS INTO THE MECHANISM OF ABSCISIC ACID	59	BIOLOGY &
SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER SCIENCE STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING 45 PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	SIGNALING BY PYL PROTEINS		BIOCHEMISTRY
THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	PROTEIN PHOSPHATASES 2C REGULATE THE ACTIVATION OF THE	53	PLANT & ANIMAL
REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING 45 PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	SNF1-RELATED KINASE OST1 BY ABSCISIC ACID IN ARABIDOPSIS		SCIENCE
STRESS IN ARABIDOPSIS ABA PERCEPTION AND SIGNALLING 45 PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED 45 PLANT & ANIMAL ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	THREE SNRK2 PROTEIN KINASES ARE THE MAIN POSITIVE	46	PLANT & ANIMAL
ABA PERCEPTION AND SIGNALLING 45 PLANT & ANIMAL SCIENCE GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED 45 PLANT & ANIMAL ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	REGULATORS OF ABSCISIC ACID SIGNALING IN RESPONSE TO WATER		SCIENCE
GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED 45 PLANT & ANIMAL ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	STRESS IN ARABIDOPSIS		
GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED 45 PLANT & ANIMAL ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	ABA PERCEPTION AND SIGNALLING	45	PLANT & ANIMAL
ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION SCIENCE AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS			SCIENCE
AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS	GENETIC CHARACTERIZATION REVEALS NO ROLE FOR THE REPORTED	45	PLANT & ANIMAL
	ABA RECEPTOR, GCR2, IN ABA CONTROL OF SEED GERMINATION		SCIENCE
GUARD CELL ANION CHANNEL SLAC1 IS REGULATED BY CDPK 44 PLANT & ANIMAL	AND EARLY SEEDLING DEVELOPMENT IN ARABIDOPSIS		
	GUARD CELL ANION CHANNEL SLAC1 IS REGULATED BY CDPK	44	PLANT & ANIMAL

PROTEIN KINASES WITH DISTINCT CA2+ AFFINITIES		SCIENCE
PYR/PYL/RCAR FAMILY MEMBERS ARE MAJOR IN-VIVO ABI1 PROTEIN	44	PLANT & ANIMAL
PHOSPHATASE 2C-INTERACTING PROTEINS IN ARABIDOPSIS		SCIENCE
THE ABA RECEPTORS - WE REPORT YOU DECIDE	43	PLANT & ANIMAL
		SCIENCE
PDR-TYPE ABC TRANSPORTER MEDIATES CELLULAR UPTAKE OF THE	41	PLANT & ANIMAL
PHYTOHORMONE ABSCISIC ACID		SCIENCE
AREB1, AREB2, AND ABF3 ARE MASTER TRANSCRIPTION FACTORS	38	PLANT & ANIMAL
THAT COOPERATIVELY REGULATE ABRE-DEPENDENT ABA SIGNALING		SCIENCE
INVOLVED IN DROUGHT STRESS TOLERANCE AND REQUIRE ABA FOR		
FULL ACTIVATION		
THE GUARD CELL AS A SINGLE-CELL MODEL TOWARDS	37	PLANT & ANIMAL
UNDERSTANDING DROUGHT TOLERANCE AND ABSCISIC ACID ACTION		SCIENCE
ABC TRANSPORTER ATABCG25 IS INVOLVED IN ABSCISIC ACID	33	PLANT & ANIMAL
TRANSPORT AND RESPONSES		SCIENCE
MOLECULAR BASIS OF THE CORE REGULATORY NETWORK IN ABA	32	PLANT & ANIMAL
RESPONSES: SENSING, SIGNALING AND TRANSPORT		SCIENCE
THE BARLEY MAGNESIUM CHELATASE 150-KD SUBUNIT IS NOT AN	31	PLANT & ANIMAL
ABSCISIC ACID RECEPTOR		SCIENCE
THE MG-CHELATASE H SUBUNIT OF ARABIDOPSIS ANTAGONIZES A	30	PLANT & ANIMAL
GROUP OF WRKY TRANSCRIPTION REPRESSORS TO RELIEVE		SCIENCE
ABA-RESPONSIVE GENES OF INHIBITION		
ABA RECEPTORS: THE START OF A NEW PARADIGM IN	27	PLANT & ANIMAL
PHYTOHORMONE SIGNALLING		SCIENCE
OZONE-TRIGGERED RAPID STOMATAL RESPONSE INVOLVES THE	24	PLANT & ANIMAL
PRODUCTION OF REACTIVE OXYGEN SPECIES, AND IS CONTROLLED		SCIENCE
BY SLAC1 AND OST1		
CLOSELY RELATED RECEPTOR COMPLEXES DIFFER IN THEIR ABA	23	PLANT & ANIMAL
SELECTIVITY AND SENSITIVITY		SCIENCE
ATALMT12 REPRESENTS AN R-TYPE ANION CHANNEL REQUIRED FOR	21	PLANT & ANIMAL
STOMATAL MOVEMENT IN ARABIDOPSIS GUARD CELLS		SCIENCE
CLOSING PLANT STOMATA REQUIRES A HOMOLOG OF AN	18	PLANT & ANIMAL
ALUMINUM-ACTIVATED MALATE TRANSPORTER		SCIENCE
THIRSTY PLANTS AND BEYOND: STRUCTURAL MECHANISMS OF	15	BIOLOGY &
ABSCISIC ACID PERCEPTION AND SIGNALING		BIOCHEMISTRY
MODULATION OF ABSCISIC ACID SIGNALING IN VIVO BY AN	6	PLANT & ANIMAL
ENGINEERED RECEPTOR-INSENSITIVE PROTEIN PHOSPHATASE TYPE		SCIENCE
2C ALLELE		

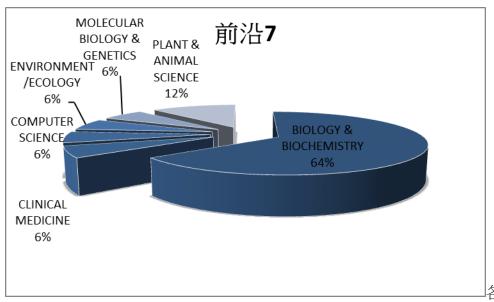
動植物前沿六

GREAT NEGLECTED TROPICAL DISEASES; SOIL-TRANSMITTED HELMINTH INFECTIONS; HUMAN HELMINTH INFECTIONS; COPROANTIGEN REDUCTION TEST (CRT) PROTOCOL; NATIONWIDE SCHOOL-BASED HELMINTH CONTROL IN PLANT & ANIMAL SCIENCE

各分類領域比例圖

核心文獻標題	Citation	分類領域
SCHISTOSOMIASIS AND WATER RESOURCES DEVELOPMENT:	314	CLINICAL MEDICINE
SYSTEMATIC REVIEW, META-ANALYSIS, AND ESTIMATES OF PEOPLE AT		
RISK		
HUMAN SCHISTOSOMIASIS	289	CLINICAL MEDICINE
CURRENT CONCEPTS - CONTROL OF NEGLECTED TROPICAL DISEASES	273	CLINICAL MEDICINE
SOIL-TRANSMITTED HELMINTH INFECTIONS: ASCARIASIS,	267	CLINICAL MEDICINE
TRICHURIASIS, AND HOOKWORM		
INCORPORATING A RAPID-IMPACT PACKAGE FOR NEGLECTED	189	CLINICAL MEDICINE
TROPICAL DISEASES WITH PROGRAMS FOR HIV/AIDS, TUBERCULOSIS,		
AND MALARIA - A COMPREHENSIVE PRO-POOR HEALTH POLICY AND		
STRATEGY FOR THE DEVELOPING WORLD		
THE GENOME OF THE BLOOD FLUKE SCHISTOSOMA MANSONI	185	MICROBIOLOGY
HELMINTH INFECTIONS: THE GREAT NEGLECTED TROPICAL DISEASES	152	CLINICAL MEDICINE
THE SCHISTOSOMA JAPONICUM GENOME REVEALS FEATURES OF	129	MICROBIOLOGY
HOST-PARASITE INTERPLAY		
LIVER FLUKE INDUCES CHOLANGIOCARCINOMA	110	CLINICAL MEDICINE
CURRENT STATUS OF VACCINES FOR SCHISTOSOMIASIS	106	MICROBIOLOGY

EFFICACY OF CURRENT DRUGS AGAINST SOIL-TRANSMITTED HELMINTH INFECTIONS - SYSTEMATIC REVIEW AND META-ANALYSIS	103	CLINICAL MEDICINE
PRAZIQUANTEL: MECHANISMS OF ACTION, RESISTANCE AND NEW DERIVATIVES FOR SCHISTOSOMIASIS	88	CLINICAL MEDICINE
MEASURING THE BURDEN OF NEGLECTED TROPICAL DISEASES: THE GLOBAL BURDEN OF DISEASE FRAMEWORK	76	CLINICAL MEDICINE
FOOD-BORNE TREMATODIASES	68	MICROBIOLOGY
DIAGNOSTIC DILEMMAS IN HELMINTHOLOGY: WHAT TOOLS TO USE AND WHEN?	66	MICROBIOLOGY
A STRATEGY TO CONTROL TRANSMISSION OF SCHISTOSOMA JAPONICUM IN CHINA	59	CLINICAL MEDICINE
TRICLABENDAZOLE PROGRESS REPORT, 2005-2009: AN ADVANCEMENT OF LEARNING?	42	PLANT & ANIMAL SCIENCE
PARASITES AND POVERTY: THE CASE OF SCHISTOSOMIASIS	40	CLINICAL MEDICINE
CLIMATE CHANGE EFFECTS ON TREMATODIASES, WITH EMPHASIS ON ZOONOTIC FASCIOLIASIS AND SCHISTOSOMIASIS	38	PLANT & ANIMAL SCIENCE
STRONGYLOIDIASIS - THE MOST NEGLECTED OF THE NEGLECTED TROPICAL DISEASES?	38	CLINICAL MEDICINE
FOOD-BORNE TREMATODIASES IN SOUTHEAST ASIA: EPIDEMIOLOGY, PATHOLOGY, CLINICAL MANIFESTATION AND CONTROL	37	MICROBIOLOGY
A COMPARATIVE CHEMOGENOMICS STRATEGY TO PREDICT POTENTIAL DRUG TARGETS IN THE METAZOAN PATHOGEN, SCHISTOSOMA MANSONI	31	CLINICAL MEDICINE
FLOTAC: NEW MULTIVALENT TECHNIQUES FOR QUALITATIVE AND QUANTITATIVE COPROMICROSCOPIC DIAGNOSIS OF PARASITES IN ANIMALS AND HUMANS	29	BIOLOGY & BIOCHEMISTRY
COST AND COST-EFFECTIVENESS OF NATIONWIDE SCHOOL-BASED HELMINTH CONTROL IN UGANDA: INTRA-COUNTRY VARIATION AND EFFECTS OF SCALING-UP	28	SOCIAL SCIENCES, GENERAL
AN UPDATED ATLAS OF HUMAN HELMINTH INFECTIONS: THE EXAMPLE OF EAST AFRICA	25	SOCIAL SCIENCES, GENERAL
LIVER FLUKE ISOLATES: A QUESTION OF PROVENANCE	10	PLANT & ANIMAL SCIENCE
COMPARISON OF TWO ASSAYS, A FAECAL EGG COUNT REDUCTION TEST (FECRT) AND A COPROANTIGEN REDUCTION TEST (CRT), FOR THE DIAGNOSIS OF RESISTANCE TO TRICLABENDAZOLE IN FASCIOLA HEPATICA IN SHEEP	8	PLANT & ANIMAL SCIENCE
TIME-DEPENDENT CHANGES TO THE TEGUMENTAL SYSTEM AND GASTRODERMIS OF ADULT FASCIOLA HEPATICA FOLLOWING TREATMENT IN VIVO WITH TRICLABENDAZOLE IN THE SHEEP HOST	8	PLANT & ANIMAL SCIENCE

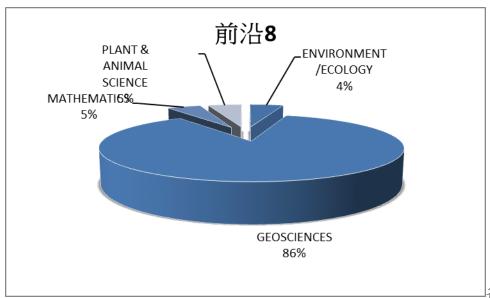

STANDARDISATION OF A COPROANTIGEN REDUCTION TEST (CRT)
PROTOCOL FOR THE DIAGNOSIS OF RESISTANCE TO
TRICLABENDAZOLE IN FASCIOLA HEPATICA

7

PLANT & ANIMAL SCIENCE

動植物前沿七

ARTHROPOD PHYLOGENY; SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENE REPERTOIRE; ARTHROPOD PHYLOGENY REVISITED; ARTHROPOD RELATIONSHIPS REVEALED; PROTEIN-CODING NUCLEAR GENE SEQUENCE IN PLANT & ANIMAL SCIENCE


各分類領域比例圖

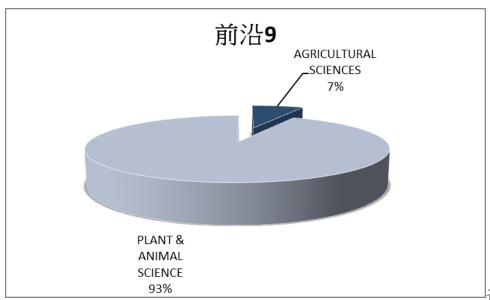
核心文獻標題	Citation	分類領域
BROAD PHYLOGENOMIC SAMPLING IMPROVES RESOLUTION OF THE	456	BIOLOGY &
ANIMAL TREE OF LIFE		BIOCHEMISTRY
TUNICATES AND NOT CEPHALOCHORDATES ARE THE CLOSEST LIVING	456	MOLECULAR BIOLOGY &
RELATIVES OF VERTEBRATES		GENETICS
SEA ANEMONE GENOME REVEALS ANCESTRAL EUMETAZOAN GENE	371	BIOLOGY &
REPERTOIRE AND GENOMIC ORGANIZATION		BIOCHEMISTRY
THE AMPHIOXUS GENOME AND THE EVOLUTION OF THE CHORDATE	343	BIOLOGY &
KARYOTYPE		BIOCHEMISTRY
THE GENOME OF THE CHOANOFLAGELLATE MONOSIGA BREVICOLLIS	241	BIOLOGY &
AND THE ORIGIN OF METAZOANS		BIOCHEMISTRY
THE TRICHOPLAX GENOME AND THE NATURE OF PLACOZOANS	169	BIOLOGY &
		BIOCHEMISTRY
FURTHER USE OF NEARLY COMPLETE, 28S AND 18S RRNA GENES TO	130	BIOLOGY &
CLASSIFY ECDYSOZOA: 37 MORE ARTHROPODS AND A KINORHYNCH		BIOCHEMISTRY
PHYLOGENOMICS REVIVES TRADITIONAL VIEWS ON DEEP ANIMAL	118	BIOLOGY &
RELATIONSHIPS		BIOCHEMISTRY
ARTHROPOD RELATIONSHIPS REVEALED BY PHYLOGENOMIC	90	BIOLOGY &

ANALYSIS OF NUCLEAR PROTEIN-CODING SEQUENCES		BIOCHEMISTRY
TIMING OF GENOME DUPLICATIONS RELATIVE TO THE ORIGIN OF	71	BIOLOGY &
THE VERTEBRATES: DID CYCLOSTOMES DIVERGE BEFORE OR AFTER?		BIOCHEMISTRY
THE AMPHIMEDON QUEENSLANDICA GENOME AND THE EVOLUTION	70	BIOLOGY &
OF ANIMAL COMPLEXITY		BIOCHEMISTRY
PHYLOBAYES 3: A BAYESIAN SOFTWARE PACKAGE FOR	63	COMPUTER SCIENCE
PHYLOGENETIC RECONSTRUCTION AND MOLECULAR DATING		
RESOLVING ARTHROPOD PHYLOGENY: EXPLORING PHYLOGENETIC	49	ENVIRONMENT/ECOLOGY
SIGNAL WITHIN 41 KB OF PROTEIN-CODING NUCLEAR GENE		
SEQUENCE		
MULTIGENE PHYLOGENY OF CHOANOZOA AND THE ORIGIN OF	30	CLINICAL MEDICINE
ANIMALS		
ARTHROPOD PHYLOGENY: AN OVERVIEW FROM THE PERSPECTIVES	26	PLANT & ANIMAL
OF MORPHOLOGY, MOLECULAR DATA AND THE FOSSIL RECORD		SCIENCE
ARTHROPOD PHYLOGENY REVISITED, WITH A FOCUS ON	18	PLANT & ANIMAL
CRUSTACEAN RELATIONSHIPS		SCIENCE
RESOLVING DIFFICULT PHYLOGENETIC QUESTIONS: WHY MORE	13	BIOLOGY &
SEQUENCES ARE NOT ENOUGH		BIOCHEMISTRY

動植物前沿八

ARCTIC OCEAN SEA ICE COVER; 2007 ARCTIC SEA ICE EXTENT MINIMUM; ARCTIC SEA ICE COVER; EXTREME ARCTIC SEA ICE MELT; SEA ICE FREE SUMMER ARCTIC IN PLANT & ANIMAL SCIENCE

各分類領域比例圖


核心文獻標題	Citation	分類領域
ARCTIC SEA ICE DECLINE: FASTER THAN FORECAST	317	GEOSCIENCES
PERSPECTIVES ON THE ARCTIC'S SHRINKING SEA-ICE COVER	244	GEOSCIENCES
ACCELERATED DECLINE IN THE ARCTIC SEA ICE COVER	239	GEOSCIENCES
FUTURE ABRUPT REDUCTIONS IN THE SUMMER ARCTIC SEA ICE	178	GEOSCIENCES
A YOUNGER, THINNER ARCTIC ICE COVER: INCREASED POTENTIAL	105	GEOSCIENCES
FOR RAPID, EXTENSIVE SEA-ICE LOSS		
RAPID REDUCTION OF ARCTIC PERENNIAL SEA ICE	94	GEOSCIENCES
HOW WELL DO COUPLED MODELS SIMULATE TODAY'S CLIMATE?	91	GEOSCIENCES
A SEA ICE FREE SUMMER ARCTIC WITHIN 30 YEARS?	88	GEOSCIENCES
PACIFIC OCEAN INFLOW: INFLUENCE ON CATASTROPHIC REDUCTION	88	GEOSCIENCES
OF SEA ICE COVER IN THE ARCTIC OCEAN		
IMPACT OF A SHRINKING ARCTIC ICE COVER ON MARINE PRIMARY	87	GEOSCIENCES
PRODUCTION		
TOWARD A SEASONALLY ICE-COVERED ARCTIC OCEAN: SCENARIOS	84	GEOSCIENCES
FROM THE IPCC AR4 MODEL SIMULATIONS		
PERFORMANCE METRICS FOR CLIMATE MODELS	83	GEOSCIENCES
THINNING AND VOLUME LOSS OF THE ARCTIC OCEAN SEA ICE	80	GEOSCIENCES
COVER: 2003-2008		

SUNLIGHT, WATER, AND ICE: EXTREME ARCTIC SEA ICE MELT DURING THE SUMMER OF 2007	79	GEOSCIENCES
ON THE ARCTIC CLIMATE PARADOX AND THE CONTINUING ROLE OF ATMOSPHERIC CIRCULATION IN AFFECTING SEA ICE CONDITIONS	67	GEOSCIENCES
DECLINE IN ARCTIC SEA ICE THICKNESS FROM SUBMARINE AND ICESAT RECORDS: 1958-2008	65	GEOSCIENCES
THE CONTRIBUTION OF CLOUD AND RADIATION ANOMALIES TO THE 2007 ARCTIC SEA ICE EXTENT MINIMUM	62	GEOSCIENCES
THE DECLINE IN ARCTIC SEA-ICE THICKNESS: SEPARATING THE SPATIAL, ANNUAL, AND INTERANNUAL VARIABILITY IN A QUARTER CENTURY OF SUBMARINE DATA	50	GEOSCIENCES
CIRCUMPOLAR THINNING OF ARCTIC SEA ICE FOLLOWING THE 2007 RECORD ICE EXTENT MINIMUM	50	GEOSCIENCES
RECENT CHANGES IN ARCTIC SEA ICE MELT ONSET, FREEZEUP, AND MELT SEASON LENGTH	46	GEOSCIENCES
SELECTING GLOBAL CLIMATE MODELS FOR REGIONAL CLIMATE CHANGE STUDIES	45	GEOSCIENCES
SMALLEST ALGAE THRIVE AS THE ARCTIC OCEAN FRESHENS	45	GEOSCIENCES
CHALLENGES IN COMBINING PROJECTIONS FROM MULTIPLE CLIMATE MODELS	42	GEOSCIENCES
ARCTIC SEA ICE RETREAT IN 2007 FOLLOWS THINNING TREND	42	GEOSCIENCES
SEPTEMBER SEA-ICE COVER IN THE ARCTIC OCEAN PROJECTED TO VANISH BY 2100	40	GEOSCIENCES
BEAUFORT GYRE FRESHWATER RESERVOIR: STATE AND VARIABILITY FROM OBSERVATIONS	36	GEOSCIENCES
SPATIAL ANALYSIS TO QUANTIFY NUMERICAL MODEL BIAS AND DEPENDENCE: HOW MANY CLIMATE MODELS ARE THERE?	29	MATHEMATICS
BAYESIAN MODELING OF UNCERTAINTY IN ENSEMBLES OF CLIMATE MODELS	23	MATHEMATICS
THE 2007 BERING STRAIT OCEANIC HEAT FLUX AND ANOMALOUS ARCTIC SEA-ICE RETREAT	22	GEOSCIENCES
IDENTIFICATION, CHARACTERIZATION, AND CHANGE OF THE NEAR-SURFACE TEMPERATURE MAXIMUM IN THE CANADA BASIN, 1993-2008	21	GEOSCIENCES
THE INTERNATIONAL POLAR YEAR (IPY) CIRCUMPOLAR FLAW LEAD (CFL) SYSTEM STUDY: OVERVIEW AND THE PHYSICAL SYSTEM	20	GEOSCIENCES
RECOVERY MECHANISMS OF ARCTIC SUMMER SEA ICE	12	GEOSCIENCES
CARBON DYNAMICS IN SEA ICE: A WINTER FLUX TIME SERIES	12	GEOSCIENCES
ARCTIC OCEAN WARMING CONTRIBUTES TO REDUCED POLAR ICE CAP	12	GEOSCIENCES

EXOPOLYMER ALTERATION OF PHYSICAL PROPERTIES OF SEA ICE AND IMPLICATIONS FOR ICE HABITABILITY AND BIOGEOCHEMISTRY IN A WARMER ARCTIC	11	GEOSCIENCES
FOOTPRINTS OF CLIMATE CHANGE IN THE ARCTIC MARINE ECOSYSTEM	11	ENVIRONMENT/ECOLOGY
DEEPENING OF THE NUTRICLINE AND CHLOROPHYLL MAXIMUM IN THE CANADA BASIN INTERIOR, 2003-2009	11	GEOSCIENCES
AN ASSESSMENT OF ARCTIC OCEAN FRESHWATER CONTENT CHANGES FROM THE 1990S TO THE 2006-2008 PERIOD	9	PLANT & ANIMAL SCIENCE
SEA ICE RESPONSE TO AN EXTREME NEGATIVE PHASE OF THE ARCTIC OSCILLATION DURING WINTER 2009/2010	8	GEOSCIENCES
SPRINGTIME CO2 EXCHANGE OVER SEASONAL SEA ICE IN THE CANADIAN ARCTIC ARCHIPELAGO	8	GEOSCIENCES
SEASONAL VARIABILITY OF THE INORGANIC CARBON SYSTEM IN THE AMUNDSEN GULF REGION OF THE SOUTHEASTERN BEAUFORT SEA	7	PLANT & ANIMAL SCIENCE
CONTROL OF PRIMARY PRODUCTION IN THE ARCTIC BY NUTRIENTS AND LIGHT: INSIGHTS FROM A HIGH RESOLUTION OCEAN GENERAL CIRCULATION MODEL	7	ENVIRONMENT/ECOLOGY
BIOGENIC CARBON FLOWS THROUGH THE PLANKTONIC FOOD WEB OF THE AMUNDSEN GULF (ARCTIC OCEAN): A SYNTHESIS OF FIELD MEASUREMENTS AND INVERSE MODELING ANALYSES	4	GEOSCIENCES

動植物前沿九

MODEL GRASS BRACHYPODIUM DISTACHYON; GRASS GENOME EVOLUTION; BARLEY GENOME; GENOME SEQUENCING; GRAPEVINE GENOME SEQUENCE SUGGESTS ANCESTRAL HEXAPLOIDIZATION IN PLANT & ANIMAL SCIENCE

各分類領域比例圖

核心文獻標題	Citation	
THE GENOME OF BLACK COTTONWOOD, POPULUS TRICHOCARPA	910	PLANT & ANIMAL
(TORR. & GRAY)		SCIENCE
THE GRAPEVINE GENOME SEQUENCE SUGGESTS ANCESTRAL	547	PLANT & ANIMAL
HEXAPLOIDIZATION IN MAJOR ANGIOSPERM PHYLA		SCIENCE
THE SORGHUM BICOLOR GENOME AND THE DIVERSIFICATION OF	323	PLANT & ANIMAL
GRASSES		SCIENCE
THE DRAFT GENOME OF THE TRANSGENIC TROPICAL FRUIT TREE	181	PLANT & ANIMAL
PAPAYA (CARICA PAPAYA LINNAEUS)		SCIENCE
GENOME SEQUENCING AND ANALYSIS OF THE MODEL GRASS	165	PLANT & ANIMAL
BRACHYPODIUM DISTACHYON		SCIENCE
POPULUS: A MODEL SYSTEM FOR PLANT BIOLOGY	101	PLANT & ANIMAL
		SCIENCE
IDENTIFICATION AND CHARACTERIZATION OF SHARED DUPLICATIONS	89	PLANT & ANIMAL
BETWEEN RICE AND WHEAT PROVIDE NEW INSIGHT INTO GRASS		SCIENCE
GENOME EVOLUTION		
BRACHYPODIUM DISTACHYON: MAKING HAY WITH A WILD GRASS	44	PLANT & ANIMAL
		SCIENCE

DEVELOPMENT OF GENETIC AND GENOMIC RESEARCH RESOURCES	39	AGRICULTURAL SCIENCES
FOR BRACHYPODIUM DISTACHYON, A NEW MODEL SYSTEM FOR		
GRASS CROP RESEARCH		
THE 'INNER CIRCLE' OF THE CEREAL GENOMES	34	PLANT & ANIMAL
		SCIENCE
MEGABASE LEVEL SEQUENCING REVEALS CONTRASTED	25	PLANT & ANIMAL
ORGANIZATION AND EVOLUTION PATTERNS OF THE WHEAT GENE		SCIENCE
AND TRANSPOSABLE ELEMENT SPACES		
PALAEOGENOMICS OF PLANTS: SYNTENY-BASED MODELLING OF	17	PLANT & ANIMAL
EXTINCT ANCESTORS		SCIENCE
UNLOCKING THE BARLEY GENOME BY CHROMOSOMAL AND	9	PLANT & ANIMAL
COMPARATIVE GENOMICS		SCIENCE
INVESTIGATIONS OF BARLEY STRIPE MOSAIC VIRUS AS A GENE	9	PLANT & ANIMAL
SILENCING VECTOR IN BARLEY ROOTS AND IN BRACHYPODIUM		SCIENCE
DISTACHYON AND OAT		

動植物前沿十

CO2-DRIVEN OCEAN ACIDIFICATION; LARVAL SURVIVAL; NEAR-FUTURE OCEAN ACIDIFICATION; OCEAN ACIDIFICATION CAUSES BLEACHING; OCEAN ACIDIFICATION ALTERS SKELETOGENESIS; IMMINENT OCEAN ACIDIFICATION IN PLANT & ANIMAL SCIENCE

各分類領域比例圖

核心又獻洧里		
核心文獻標題	Citation	分類領域
CORAL REEFS UNDER RAPID CLIMATE CHANGE AND OCEAN	498	ENVIRONMENT/ECOLOGY
ACIDIFICATION		
IMPACTS OF OCEAN ACIDIFICATION ON MARINE FAUNA AND	216	PLANT & ANIMAL
ECOSYSTEM PROCESSES		SCIENCE
OCEAN ACIDIFICATION: THE OTHER CO2 PROBLEM	210	GEOSCIENCES
EVIDENCE FOR UPWELLING OF CORROSIVE "ACIDIFIED" WATER	146	ENVIRONMENT/ECOLOGY
ONTO THE CONTINENTAL SHELF		
VOLCANIC CARBON DIOXIDE VENTS SHOW ECOSYSTEM EFFECTS OF	123	ENVIRONMENT/ECOLOGY
OCEAN ACIDIFICATION		
OCEAN ACIDIFICATION CAUSES BLEACHING AND PRODUCTIVITY LOSS	108	ENVIRONMENT/ECOLOGY
IN CORAL REEF BUILDERS		
MARINE CALCIFIERS EXHIBIT MIXED RESPONSES TO CO2-INDUCED	90	GEOSCIENCES
OCEAN ACIDIFICATION		
DECLINING CORAL CALCIFICATION ON THE GREAT BARRIER REEF	85	ENVIRONMENT/ECOLOGY
DECREASED ABUNDANCE OF CRUSTOSE CORALLINE ALGAE DUE TO	80	GEOSCIENCES
OCEAN ACIDIFICATION		
OCEAN ACIDIFICATION AND ITS POTENTIAL EFFECTS ON MARINE	79	ENVIRONMENT/ECOLOGY

ECOSYSTEMS		
DYNAMIC PATTERNS AND ECOLOGICAL IMPACTS OF DECLINING	76	ENVIRONMENT/ECOLOGY
OCEAN PH IN A HIGH-RESOLUTION MULTI-YEAR DATASET		
EFFECTS OF CO2-DRIVEN OCEAN ACIDIFICATION ON THE EARLY	72	ENVIRONMENT/ECOLOGY
DEVELOPMENTAL STAGES OF INVERTEBRATES		
IMMINENT OCEAN ACIDIFICATION IN THE ARCTIC PROJECTED WITH	69	ENVIRONMENT/ECOLOGY
THE NCAR GLOBAL COUPLED CARBON CYCLE-CLIMATE MODEL		
ECOSYSTEM EFFECTS OF OCEAN ACIDIFICATION IN TIMES OF OCEAN	60	ENVIRONMENT/ECOLOGY
WARMING: A PHYSIOLOGIST'S VIEW		
NEAR-FUTURE LEVEL OF CO2-DRIVEN OCEAN ACIDIFICATION	58	ENVIRONMENT/ECOLOGY
RADICALLY AFFECTS LARVAL SURVIVAL AND DEVELOPMENT IN THE		
BRITTLESTAR OPHIOTHRIX FRAGILIS		
PREDICTING THE IMPACT OF OCEAN ACIDIFICATION ON BENTHIC	56	PLANT & ANIMAL
BIODIVERSITY: WHAT CAN ANIMAL PHYSIOLOGY TELL US?		SCIENCE
EFFECTS OF INCREASED SEAWATER PCO(2) ON EARLY DEVELOPMENT	48	PLANT & ANIMAL
OF THE OYSTER CRASSOSTREA GIGAS		SCIENCE
CORAL REEFS MAY START DISSOLVING WHEN ATMOSPHERIC CO2	47	GEOSCIENCES
DOUBLES		
OCEAN ACIDIFICATION AND CALCIFYING REEF ORGANISMS: A	47	PLANT & ANIMAL
MESOCOSM INVESTIGATION		SCIENCE
SHELLFISH FACE UNCERTAIN FUTURE IN HIGH CO2 WORLD:	38	CLINICAL MEDICINE
INFLUENCE OF ACIDIFICATION ON OYSTER LARVAE CALCIFICATION		
AND GROWTH IN ESTUARIES		
RESPONSE OF SEA URCHIN PLUTEUS LARVAE (ECHINODERMATA:	36	PLANT & ANIMAL
ECHINOIDEA) TO REDUCED SEAWATER PH: A COMPARISON AMONG		SCIENCE
A TROPICAL, TEMPERATE, AND A POLAR SPECIES		
VULNERABILITY OF MARINE BIODIVERSITY TO OCEAN ACIDIFICATION:	34	PLANT & ANIMAL
A META-ANALYSIS		SCIENCE
ELEVATED WATER TEMPERATURE AND CARBON DIOXIDE	32	PLANT & ANIMAL
CONCENTRATION INCREASE THE GROWTH OF A KEYSTONE		SCIENCE
ECHINODERM		
EFFECTS OF ELEVATED PCO(2) ON EARLY DEVELOPMENT IN THE	28	PLANT & ANIMAL
MUSSEL MYTILUS GALLOPROVINCIALIS		SCIENCE
META-ANALYSIS REVEALS NEGATIVE YET VARIABLE EFFECTS OF	27	ENVIRONMENT/ECOLOGY
OCEAN ACIDIFICATION ON MARINE ORGANISMS		
IMPACT OF NEAR-FUTURE OCEAN ACIDIFICATION ON ECHINODERMS	27	ENVIRONMENT/ECOLOGY
OCEAN ACIDIFICATION ALTERS SKELETOGENESIS AND GENE	22	ENVIRONMENT/ECOLOGY
EXPRESSION IN LARVAL SEA URCHINS		
THE EFFECT OF OCEAN ACIDIFICATION ON CALCIFYING ORGANISMS	12	ENVIRONMENT/ECOLOGY
IN MARINE ECOSYSTEMS: AN ORGANISM-TO-ECOSYSTEM		

PERSPECTIVE		
LOCAL ADAPTATION IN MARINE INVERTEBRATES	10	GEOSCIENCES
BIOCALCIFICATION IN THE EASTERN OYSTER (CRASSOSTREA	8	PLANT & ANIMAL
VIRGINICA) IN RELATION TO LONG-TERM TRENDS IN CHESAPEAKE		SCIENCE
BAY PH		
THE ROLE OF DEEP REEFS IN SHALLOW REEF RECOVERY: AN	7	ENVIRONMENT/ECOLOGY
ASSESSMENT OF VERTICAL CONNECTIVITY IN A BROODING CORAL		
FROM WEST AND EAST AUSTRALIA		
THE OCEAN ACIDIFICATION SEASCAPE AND ITS RELATIONSHIP TO THE	7	PLANT & ANIMAL
PERFORMANCE OF CALCIFYING MARINE INVERTEBRATES:		SCIENCE
LABORATORY EXPERIMENTS ON THE DEVELOPMENT OF URCHIN		
LARVAE FRAMED BY ENVIRONMENTALLY-RELEVANT PCO(2)/PH		