

Soil texture classes according to proportions of sand, silt and clay (Motsara, Roy, 2008)

8.27 Soil chemical fertility

Project Name: Nature4Cities

Author/s and affiliations: Ryad Bouzouidja¹, Patrice Cannavo¹, Stéphanie Decker² ¹ Institut Agro – Ecole Interne AGROCAMPUS OUEST, 2 rue André Le Nôtre, 49045 Angers Cedex

01, France; e-mail: <u>patrice.cannavo@agrocampus-ouest.fr</u> ² NOBATEK/INEF4, 67 Rue de Mirambeau, 64600 Anglet, France

Chemical fertility of soil - Cfer		Green Space Management
Description and justification	Cfer relates to the mineral concepts of biodisponibility toxicities and equilibria	
Definition	fertility (Nature4Cities D2.1 - to assess the ability of soi food (vegetables) - to improve the soil proper	soil, in this case chemical soil) : I to grow ornamental plants and ties if necessary (1) addition of addition of compost to increase

the organic carbon content, (3) addition of mineral nutrients if there is a risk of chlorosis The output is qualitative (poor, moderate or optimal) or 0 to 1Strengths and weaknessesThis indicator is capable to describe initial planning problems, like soil nutrient deficiency for plant growth. It is possible to apply the indicator in numerous cases (various locations). The indicator has been used in different circumstances (different soil uses) and delivered reasonable results. However it requires a number of samples adapted to soil heterogeneityMeasurement procedure and toolREQUIRED TOOL • soil sampling materials • laboratory analytical tools CALCULATION METHOD • measurement of each parameter • global evaluation from evaluation of each parameterScale of measurement 0 E City E Neighbourhood E ObjectBibliography • Measurement/MonitoringRequired data caCo ₂ , CE (methods : Metson, CobaltiHexamine), P (Olsen method)Data input type e objecicial analyses• Initial diagnostic/ assessment in case of hardly growth of vegetationLevel of required requiredEasy to calculate but requires data. This indicator requires laboratory or on-site measurements The data collection data value been already collected in case of soil characterisation but usually not. Measuring the parameters is the best way to calculate this indicator, because urban soil properties are very spatially heterogeneous.Synergies with other indicatorsIn Nature4Cites D2.4D. This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged sites on soil surfaces that can retain positively charged sites on soil surfaces that can retain positively charged sites on		
weaknessesproblems, like soil nutrient deficiency for plant growth. It is possible to apply the indicator in numerous cases (various locations). The indicator has been used in different circumstances (different soil uses) and delivered reasonable results. However it requires a number of samples adapted to soil heterogeneityMeasurement procedure and toolREQUIRED TOOL • soil sampling materials • laboratory analytical tools CALCULATION METHOD • measurement of each parameter • global evaluation from evaluation of each parameter • global evaluation from evaluation of each parameterScale of measurementSoil sampling materials • laboratory analytical tools CALCULATION METHOD • measurement MonitoringRequired dataOrganic C, Total N, K, C/N, pH method: (water, CaCl ₂), CaCO ₃ , CEC (methods : Metson, CobaltiHexamine), P (Olsen method)Data collection frequencyEasy to calculate but requires data. This indicator requires laboratory or on-site measurements • chemical analysesData collection frequencyEasy to calculate but requires data. This indicator requires laboratory or on-site measurements reduired dataSynergies with other indicatorsIn Nature4Cities the Cfer KPI is calculated using cation exchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2, 4), This parameter is a measure of the quantity of negatively charged ison (cations) such as calcium (Ca ²⁺), magnesium (Mg ²⁺), and potasium (K ⁺), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to KAhr and Madsen (1995). The Cfer score is on on enand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and		if there is a risk of chlorosis
NotestiteSectorprocedure and toolisol sampling materials i laboratory analytical tools CALCULATION METHOD measurement of each parameter global evaluation from evaluation of each parameterScale of measurementIsol City Isol Neighbourhood Isol OpjectData sourceBibliography Measurement/Monitoring CaCo, CEC (methods : Metson, CobaltiHexamine), P (Olsen method)Data input type• physicochemical measurements • chemical analysesData collection frequency• Initial diagnostic/ assessment in case of hardly growth of vegetationLevel of expertise requiredEasy to calculate but requires data. This indicator requires laboratory or on-site measurements the data could have been already collected in case of soil characterisation but usually not. Measuring the parameters is the best way to calculate this indicator, because urban soil properties are very spatially heterogeneous.Synergies with other indicatorsIn Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged sites on soil surfaces that can retain positively charged sites on soil surfaces that can retain positively charged ons (cations) such as calcium (Ca ²⁺), magnesium (Mg ²⁺), and potassium (K ⁺), by electrostatic forces.Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst (0) scenarioConnection withSD15 Life on Land	_	problems, like soil nutrient deficiency for plant growth. It is possible to apply the indicator in numerous cases (various locations). The indicator has been used in different circumstances (different soil uses) and delivered reasonable results. However it requires a number of samples adapted to soil heterogeneity
measurement ☑ Neighbourhood ☑ Object Data source Bibliography • Measurement/Monitoring Required data Organic C, Total N, K, C/N, pH method: (water, CaCl ₂), CaCO ₃ , CEC (methods : Metson, CobaltiHexamine), P (Olsen method) Data input type • physicochemical measurements • chemical analyses Data collection frequency • Initial diagnostic/ assessment in case of hardly growth of vegetation Level of expertise required Easy to calculate but requires data. This indicator requires laboratory or on-site measurements The data could have been already collected in case of soil characterisation but usually not. Measuring the parameters is the best way to calculate this indicator, because urban soil properties are very spatially heterogeneous. Synergies with other indicators In Nature4Cities the Cfer KPI is calculated using cation exchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged ions (cations) such as calcium (Ca ²⁺), magnesium (Mg ²⁺), and potassium (K ⁺), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst (0) scenario	procedure and	 soil sampling materials laboratory analytical tools CALCULATION METHOD measurement of each parameter
 Measurement/Monitoring Organic C, Total N, K, C/N, pH method: (water, CaCl₂), CaCO₃, CEC (methods : Metson, CobaltilHexamine), P (Olsen method) Data input type physicochemical measurements chemical analyses Data collection frequency Easy to calculate but requires data. This indicator requires laboratory or on-site measurements The data could have been already collected in case of soil characterisation but usually not. Measuring the parameters is the best way to calculate this indicator, because urban soil properties are very spatially heterogeneous. Synergies with other indicators In Nature4Cities the Cfer KPI is calculated using cation exchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged ions (cations) such as calcium (Ca²⁺), magnesium (Mg²⁺), and potassium (K⁺), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst (0) scenario 		⊠ Neighbourhood
CaCO3, CEC (methods : Metson, CobaltiHexamine), P (Olsen method)Data input type• physicochemical measurements • chemical analysesData collection frequency• Initial diagnostic/ assessment in case of hardly growth of vegetationLevel of expertise requiredEasy to calculate but requires data. This indicator requires laboratory or on-site measurements The data could have been already collected in case of soil characterisation but usually not. Measuring the parameters is is the best way to calculate this indicator, because urban soil properties are very spatially heterogeneous.Synergies with other indicatorsIn Nature4Cities the Cfer KPI is calculated using cation exchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged ions (cations) such as calcium (Ca ²⁺), magnesium (Mg ²⁺), and potassium (K+), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst (0) scenarioConnection withSD15 Life on Land	Data source	
 chemical analyses chemical analyses Data collection frequency Initial diagnostic/ assessment in case of hardly growth of vegetation Level of expertise required Easy to calculate but requires data. This indicator requires laboratory or on-site measurements The data could have been already collected in case of soil characterisation but usually not. Measuring the parameters is the best way to calculate this indicator, because urban soil properties are very spatially heterogeneous. Synergies with other indicators In Nature4Cities the Cfer KPI is calculated using cation exchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged ions (cations) such as calcium (Ca²⁺), magnesium (Mg²⁺), and potassium (K⁺), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst (0) scenario Connection with 	Required data	CaCO ₃ , CEC (methods : Metson, CobaltiHexamine), P (Olsen
Data collection frequency• Initial diagnostic/ assessment in case of hardly growth of vegetationLevel of expertise requiredEasy to calculate but requires data. This indicator requires laboratory or on-site measurements The data could have been already collected in case of soil characterisation but usually not. Measuring the parameters is the best way to calculate this indicator, because urban soil properties are very spatially heterogeneous.Synergies with other indicatorsIn Nature4Cities the Cfer KPI is calculated using cation exchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged ions (cations) such as calcium (Ca ²⁺), magnesium (Mg ²⁺), and potassium (K+), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst (0) scenarioConnection withSD15 Life on Land	Data input type	
expertise requiredThis indicator requires laboratory or on-site measurements The data could have been already collected in case of soil characterisation but usually not. Measuring the parameters is the best way to calculate this indicator, because urban soil properties are very spatially heterogeneous.Synergies with other indicatorsIn Nature4Cities the Cfer KPI is calculated using cation exchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged ions (cations) such as calcium (Ca ²⁺), magnesium (Mg ²⁺), and potassium (K ⁺), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst (0) scenarioConnection withSD15 Life on Land		• Initial diagnostic/ assessment in case of hardly growth of
other indicatorsexchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged ions (cations) such as calcium (Ca ²⁺), magnesium (Mg ²⁺), and potassium (K ⁺), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst (0) scenarioConnection withSD15 Life on Land	expertise	This indicator requires laboratory or on-site measurements The data could have been already collected in case of soil characterisation but usually not. Measuring the parameters is the best way to calculate this indicator, because urban
Connection with SD15 Life on Land		In Nature4Cities the Cfer KPI is calculated using cation exchange capacity parameter (CEC in meq/100 g) (Nature4Cities D2.4). This parameter is a measure of the quantity of negatively charged sites on soil surfaces that can retain positively charged ions (cations) such as calcium (Ca ²⁺), magnesium (Mg ²⁺), and potassium (K ⁺), by electrostatic forces. Cation exchange capacity of soil is measured according a standardized method: the ammonium acetate method according to Kahr and Madsen (1995). The Cfer score is on one hand also expressed in form of a performance bar with numerical values ranked in terms to the best (1) and worst
		SD15 Life on Land

Additional information

References	 Damas, O., & Rossignol, J. P. (2009, June). Identification of mineral and organic waste resources as alternative materials for fertile soil reconstitution. In II International Conference on Landscape and Urban Horticulture 881 (pp. 395-398). Kahr, G, and FT Madsen. 1995. "Determination of the Cation Exchange Capacity and the Surface Area of Bentonite, Illite and Kaolinite by Methylene Blue Adsorption." Applied Clay Science 9 (5): 327–336. https://doi.org/10.1016/0169-1317(94)00028-0. Vidal-Beaudet, L., Rokia, S., Nehls, T., & Schwartz, C. (2016). Aggregation and availability of phosphorus in a Technosol constructed from urban wastes. Journal of Soils and Sediments, 1-11. Rokia, S., Séré, G., Schwartz, C., Deeb, M., Fournier, F., Nehls, T., & Vidal-Beaudet, L. (2014). Modelling agronomic properties of Technosols constructed with urban wastes. Waste management, 34(11), 2155-2162. Nature4Cities, D2.1 - System of integrated multi-scale and multi-thematic performance indicators for the assessment of urban challenges and NBS. https://www.nature4cities.eu/post/nature4cities-defined-performance-indicators-to-assess-urban-challenges-and-nature-based-solutions Nature4Cities, D2.3 - NBS database completed with urban performance data https://www.nature4cities.eu/post/applicability-urban.challenges-and-indicators-real-case-studies Nature4Cities, D2.4 - Development of a simplified urban performance assessment (SUA) tool 	

8.28 Flammability Index

Project Name: PHUSICOS (Grant Agreement no. 776681)

Author/s and affiliations: Gerardo Caroppi^{1,2}, Carlo Gerundo², Francesco Pugliese², Maurizio Giugni², Marialuce Stanganelli², Farrokh Nadim³, Amy Oen³

¹ Aalto University, Department of Built Environment, Espoo, Finland (gerardo.caroppi@aalto.fi)

² University of Naples Federico II (UNINA), Department of Civil, Architectural and Environmental Engineering, Naples, Italy

³ Norwegian Geotechnical Institute (NGI), Oslo, Norway

Flammability Index

Green Space Management