Required data	Soil type, particle size distribution, soil moisture, matric suction		
Data input type	Numerical, category		
Data collection frequency	once		
Level of expertise required	Low for sampling/measurement; high for prediction		
Synergies with other indicators	Moisture content, soil strength, vegetation cover		
Connection with SDGs	11, 13, 15, 17		
Opportunities for participatory data collection	yes		
Additional information			
References	 Gonzalez-Ollauri, A. and Mickovski, S.B., 2017. Plant-Best: A novel plant selection tool for slope protection. Ecological Engineering 106 (154–173) Bouma, J. (1989). "Using soil survey data for quantitative land evaluation". Advances in Soil Science. 9: 177–213. 		

8.21 Soil water flux and degree of soil saturation

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹, Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Soil water flux and degree of saturation		Water Management Green Space Management
Description and justification	the atmosphere, into the a within the soil, establishing is intrinsically related to th	hsport of water into the soil from atmosphere from the soil and g the soil water mass balance. It is stress state of the soil and to occurring at the plant-soil- g., plant uptake and

	Degree of saturation is a measure of the soil water mass balance. It is directly related to soil strength, matric suction, and soil water flux. Vegetation plays a key role in ecosystems by linking biophysical processes—such as absorption of solar radiation, rainfall interception, and evapotranspiration—to biogeochemical processes—such as photosynthesis and volatile organic compound emission. Moreover, vegetation links the terrestrial carbon cycle to hydrology through stomatal aperture (Jarvis and McNaughton, 1986), and through other processes such as soil-water extraction by roots (de Jong van Lier et al., 2006). Terrestrial water fluxes are controlled to a large extent by above-ground and below-ground biological processes where vegetation plays a major role.	
Definition	The degree of saturation is the ratio of the volume of water to the volume of voids, usually represented as percentage, it can vary from 0 (totally dry soil) to 100 (completely saturated soil). The gradient of the total potential of soil water in both, the soil fully saturated by water (saturated flow) as well as in soil not fully saturated by water (unsaturated flow) creates a flow (flux) in the soil.	
Strengths and weaknesses	+: a number of models exist for monitoring and prediction of fluxes, albeit usually at a larger scale. Degree of saturation: easy to measure with gravimetric methods in the lab and in situ with reflectometers; intrinsically related to matric suction through soil water retention function; related to meteorological variables rainfall and temperature -: some phenomena associated with vegetation, and this NBS, have not been modelled through the soil water flux	
Measurement procedure and tool	Soil water flux is calculated using the hydraulic gradient measured with a tensiometer at two depths and the hydraulic · conductivity corresponding to the average soil water content between the two depths determined with a neutron probe or by direct sampling and lab testing (moisture content determination). The degree of saturation is calculated as a ratio of the moisture content and specific gravity on one side and the void ratio on the other. Time domain reflectometry sensors	
Scale of measurement	Point, micro	
Data source		
Required data	For the flux: hydraulic gradient between two points; soil water content	

	For the saturation degree: soil water content, specific gravity of the soil particles, void ratio of the soil		
Data input type	Quantitative, numerical		
Data collection frequency	Continuous		
Level of expertise required	Intermediate to high		
Synergies with other indicators	Digital terrain model; soil moisture content, groundwater table level, soil strength		
Connection with SDGs	11,13,15,17		
Opportunities for participatory data collection	Yes, through citizen science		
Additional information	ation		
References	 Gonzalez-Ollauri, A. and Mickovski, S.B., 2017. Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology, 549 (374–387) Gonzalez-Ollauri, A. and Mickovski, S.B., 2017. Plant-Best: A novel plant selection tool for slope protection. Ecological Engineering 106 (2017) 154–173. 		

8.22 Stemflow funnelling ratio

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹, Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Stemflow funnellin	ng ratio	Water Management Green Space Management
Description and justification	plant stem and promote the soil. The volume of w substantial and its infiltra changes in the stress sta interacts with the canopy	parts funnel rainfall around the its infiltration preferentially into vater funnelled around the stem is ation into the soil may promote te of the soil. Also, when rainfall v it becomes richer with nutrients will then be transported into the