Level of expertise required	High	
Synergies with other indicators		
Connection with SDGs	-	
Opportunities for participatory data collection		
Additional information		
References		

8.16 Soil matric potential

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹,

Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Soil matric potentia	I Green Space Management	
Description and justification	Soil matric suction increases soil strength and contributes towards strength and stability against landslides and erosion	
Definition	The pressure dry soil and plant water uptake exerts on the surrounding soils to equalise the moisture content in the overall block of soil.	
Strengths and weaknesses	Strengths: little suction provides large increase in strength Weaknesses: difficult to measure; changes rapidly; uncertain relationship with meteorological drivers	
Measurement procedure and tool	Field tensiometer inserted in the soil at a certain depth.	
Scale of measurement	Micro / point measurement	
Data source		
Required data	Soil matric suction (in kPa)	
Data input type	Electrical (voltage)	

Data collection frequency	continuous		
Level of expertise required	Low for collection, high for interpretation		
Synergies with other indicators	Soil temperature, rainfall; aggregate stability; soil water flux; plant uptake; evapotranspiration; Hydro-mechanical stability and strength of soil materials		
Connection with SDGs	11, 13, 15, 17		
Opportunities for participatory data collection	Yes, citizen science		
Additional information			
References	Gonzalez-Ollauri, A. and Mickovski, S.B., 2017. Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology, 549 (374–387) Gonzalez-Ollauri. A., Stokes, A., Mickovski, S.B., 2020. A novel framework to study the effect of tree architectural traits on stemflow yield and its consequences for soil-water dynamics. Journal of Hydrology, 582 (124448)		

8.17 Soil temperature

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹, Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Soil temperature		Climate Resilience Natural and Climate Hazards Green Space Management
Description and justification	Soil temperature is intrinsically related to soil microbial activity and to biogeochemical and hydrological fluxes in the soil. Different soil temperatures would be preferred by different vegetation whose roots would provide strengths and resistance against erosion or sliding.	
Definition	The degree or intensity of heat present in soil, especially as expressed according to a comparative scale and shown by a thermometer or perceived by touch.	