Additional information

References	 Błażejczyk, K., Broede, P., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B. & Kunert, A. (2010). Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, 14, 91-102.
	Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G.,
	Kampmann, B., Tinz, B. & Havenith, G. (2012). International Journal of Biometeorology, 56, 481-494.
	Fiala, D., Havenith, G., Bröde, P., Kampmann, B & Jendritzky, G.
	(2011). UTCI-Fiala multi-node model of human temperature
	regulation and thermal comfort. International Journal of
	Biometeorology, 56, 429-441.
	Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human
	thermoregulation for a wide range of environmental
	conditions: the passive system. Journal of Applied Physiology, 87, 1957–1972.
	Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human
	thermoregulatory and temperature responses to a wide range
	of environmental conditions. International Journal of
	Biometeorology, 45, 143–159.
	Fiala D, Lomas KJ, Stohrer M (2003) First principles modeling of
	thermal sensation responses in steady-state and transient
	conditions. ASHRAE Transactions, 109, 179–186.
	Havenith G, Fiala D, Błażejczyk K, Richards M, Bröde P, Holmér I,
	Rintamäki H, Benshabat Y, Jendritzky G (2011) The UTCI-
	Clothing Model. International Journal of Biometeorology, 56,
	461-470

6.46 Human comfort: Physiological equivalent temperature (PET)

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Human Comfort: Physiological Equivalent Temperature (PET)		Climate Resilience Natural and Climate Hazards
Description and	Green urban infrastructure	can significantly affect climate
justification	change adaptation by redu	icing air and surface

	temperatures with the help of shading and through increased evapotranspiration. Conversely, green urban infrastructure can also provide insulation from cold and/or shelter from wind, thereby reducing heating requirements (Cheng, Cheung, & Chu, 2010). By moderating the urban microclimate, green infrastructure can support a reduction in energy use and improved thermal comfort (Demuzere et al., 2014). The cooling effect of green space results in lower temperatures in the surrounding built environment (Yu & Hien, 2006).
Definition	Mean or peak daytime local temperature by PET calculation (°C)
Strengths and weaknesses	 + Compared to PMV, PET has the advantage to use °C, which allows the results to be easily interpreted by urban or regional planners - Requires extensive amount of data for evaluation
Measurement procedure and tool	To calculate PET (Höppe, 1999): 1. Determine the thermal conditions of the body using MEMI (1) for a given set of climatic parameters. The Munich energy-balance model for individuals (MEMI) is based on the energy balance equation of the human body and is related to the Gagge two-node model (Gagge, Stolwijk, & Nishi, 1972). The MEMI equation is as follows:
	$M + W + + C + E_D + E_{Re} + E_{SW} + S = 0 $ (1)
	where, <i>M</i> is the metabolic rate (internal energy production by oxidation of food); <i>W</i> is the physical work output; <i>R</i> is the net radiation of the body; <i>C</i> is the convective heat flow; E_D is the latent heat flow to evaporate water into water vapour diffusing through the skin; E_D is the sum of heat
	flows for heating and humidifying the inspired air; E_{Sw} is the heat flow due to evaporation of sweat; and, <i>S</i> is the storage heat flow for heating or cooling the body mass. As a first step, the mean surface temperature of the clothing (T_{cl}), the mean skin temperature (T_{sk}) and the core temperature (T_c) must be evaluated. These three parameters provide the basis for calculation of E_{Sw} . Two equations are necessary to describe the heat flows from the body core to the skin surface (F_{cs}) as shown in (2), and heat flows from the skin surface through the clothing layer to the clothing surface (F_{sc}) as shown in (3) (Höppe, 1999):
	flows for heating and humidifying the inspired air; E_{SW} is the heat flow due to evaporation of sweat; and, <i>S</i> is the storage heat flow for heating or cooling the body mass. As a first step, the mean surface temperature of the clothing (T_{cl}), the mean skin temperature (T_{sk}) and the core temperature (T_c) must be evaluated. These three parameters provide the basis for calculation of E_{SW} . Two equations are necessary to describe the heat flows from the body core to the skin surface (F_{cs}) as shown in (2), and heat flows from the skin surface through the clothing layer to the clothing surface (F_{sc}) as shown in (3) (Höppe, 1999): $F_{CS} = v_b \times \rho_b \times c_b \times (T_c - T_{sk})$ (2)
	flows for heating and humidifying the inspired air; E_{Sw} is the heat flow due to evaporation of sweat; and, <i>S</i> is the storage heat flow for heating or cooling the body mass. As a first step, the mean surface temperature of the clothing (T_{cl}), the mean skin temperature (T_{sk}) and the core temperature (T_c) must be evaluated. These three parameters provide the basis for calculation of E_{Sw} . Two equations are necessary to describe the heat flows from the body core to the skin surface (F_{cs}) as shown in (2), and heat flows from the skin surface through the clothing layer to the clothing surface (F_{sc}) as shown in (3) (Höppe, 1999): $F_{CS} = v_b \times \rho_b \times c_b \times (T_c - T_{sk})$ (2) where, v_b is blood flow from body core to skin (L/s/m ²); ρ_b is blood density (kg/L); and, c_b is the specific heat (W/sK/kg).

	where, I_{cl} is the heat resistance of the clothing (K/m ² /W). 2. Insert calculated values for mean skin temperature (T_{sk}) and core temperature (T_c) into the MEMI equation (1) and solve the three equations for air temperature, T_a (v \Box = 0.1 m/s; water vapour pressure = 12 hPa; $T_{mrt} = T_a$). This temperature is equivalent to PET.	
Scale of measurement	Building or plot scale	
Data source		
Required data	Energy balance of the human body, heat flows though the body and clothing	
Data input type	Quantitative	
Data collection frequency	Annually, and before and after NBS implementation	
Level of expertise required	High – requires ability to follow the calculation procedure and units, and to critically evaluate the results	
Synergies with other indicators	Directly related to <i>Incorporation of environmental design in buildings</i> indicator	
Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action	
Opportunities for participatory data collection	No opportunities identified	
Additional information		
References	 Gagge, A., Stolwijk, J.A., & Nishi, Y. (1971). An effective temperature scale based on a simple model of human physiological regulatory response. ASHRAE Transactions, 77(1), 247-257. Höppe, P. (1999). The physiological equivalent temperature – a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 2466, 71-75. 	