National Center for Atmospheric Research (NCAR) & University Corporation for Atmospheric Research (UCAR). (n.d.). Weather Research and Forecasting (WRF) Model Users' Page. Retrieved from <u>http://www2.mmm.ucar.edu/wrf/users/</u>
National Oceanic and Atmospheric Administration (NOAA). (n.d.). Weather Research and Forecasting model coupled to Chemistry (WRF-Chem). Retrieved from <u>https://ruc.noaa.gov/wrf/wrf-chem/</u>
 Pineda, N., Jorba, O., Jorge, J. & Baldasano, J.M. (2004). Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: application to a mesoscale meteorological model. International Journal of Remote Sensing, 25(1), 129–143.
Russo, S., Dosio, A., Graversen, R., Sillmann, J., Carrao, H., Dunbar, M.BVogt, J.V. (2014). Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research: Atmospheres, 119(22), 12500–12512.
Weather Research and Forecasting Model (WRF): https://www.mmm.ucar.edu/weather-research-and-forecasting- model

6.45 Human comfort: Universal thermal climate index (UTCI)

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Universal Thermal Climate Index (UTCI)		Climate Resilience Natural and Climate Hazards Health and Wellbeing
Description and justification	Health and Wellbeing UTCI index represents air temperature of the reference condition with the same physiological response as the actual condition. The UTCI provides a one-dimensional value that reflects the human physiological reaction to the multi- dimensional outdoor thermal environment (Bröde et al., 2012). It can predict both whole body thermal effects (hypothermia and hyperthermia; heat and cold discomfort), and local effects (facial, hands and feet cooling and frostbite). Applications of the UTCI include weather forecasts, bioclimatological assessments, bioclimatic	

	mapping, urban design, engineering of outdoor spaces, outdoor recreation, epidemiology and climate impact research.		
Definition	The UTCI is the air temperature that would produce under reference conditions the same thermal strain as the actual thermal environment. In other words, the UTCI is the reference environmental temperature causing strain.		
Strengths and weaknesses	 + Mathematical expression of a person's thermal comfort in the outdoors + The output is expressed in easily understandable temperature units, e.g., °C. 		
Measurement procedure and tool	The human body core temperature must be maintained within a narrow range around 37°C to ensure proper function of the body's inner organs and the brain, thus optimising human comfort, performance and health. In contrast, the temperature of the skin and extremities can vary widely, depending upon environmental conditions. This variation in the temperature of extremities is one of the mechanisms to equilibrate heat production and heat loss. The heat exchange between the human body and environment can be described in the form of the energy balance equation:		
	$M + W + C + K + E + Q + Res \pm S = 0$		
	 where M=heat produced by metabolism; W=heat generated by muscular activity; C=sensible heat flux (heat transferred by convection); K=heat transferred through conduction contact with solid bodies); E=latent heat flux (evaporative heat flux); Q=radiative heat transfer; Res=heat transfer through respiration; and, S=heat content of the body. 		
	The UTCI is derived from this mathematical model of thermoregulation with an integrated adaptive clothing model that also accounts for predicted votes of the dynamic thermal sensation based on core and skin temperature (Fiala et al., 1999, 2001, 2003; Havenith et al., 2011). The deviation of UTCI temperature from measured air temperature depends on measured values of air temperature (T_a) and mean radiant temperature (T_{mrt}), wind speed at a height of 10 m (v_a) and humidity expressed as water vapour pressure (p_a) or relative humidity (rH): UTCI (T_a , T_{mrt} , v_a , p_a) = $Ta + Offset(T_a, T_{mrt}, v_a, p_a)$ The model reference condition is walking at 4 km/h (135 W/m ²) with $T_{mrt}=T_a$, $v_a=0.5$ m/s, $rH=50\%$ ($T_a > 29^{\circ}$ C)		

and p_a =20 hPa (T_a >29°C) (Bröde et al., 2012). The UTCI dynamic model response can be determined using the online calculator available from <u>http://utci.org</u>. The relationship between UTCI temperature (expressed in °C) and physiological stress is shown in the table below (adapted from Błażejczyk et al., 2010).

	Above +46	Extreme heat stress	
	+38 to +46	Very strong heat stress	
	+32 to +38	Strong heat stress	
	+26 to +32	Moderate heat stress	
	+9 to +26	No thermal stress	
	0 to +9	Slight cold stress	
	-13 to 0	Moderate cold stress	
	-27 to -13	Strong cold stress	
	-40 to -27	Very strong cold stress	
	Below -40	Extreme cold stress	
Scale of measurement	Plot – street – neighbourhood – district		
Data source	Data source		
Required data	Air temperature, T _a (°C) Mean radiant temperature, T _{mrt} (degrees Kelvin) Water vapour pressure (hPa) Relative humidity (%) Wind speed at a height of 10 m (m/s)		
Data input type	Quantitative		
Data collection frequency	Frequency as desired. UTCI can be calculated frequently with measurement intervals determined by (automated) weather data acquisition.		
Level of expertise required	Low to Moderate		
Synergies with other indicators	Direct relation to <i>Heatwave incidence</i> and <i>Number of</i> <i>combined tropical nights and hot days</i> indicators. Similar to <i>Physiological equivalent temperature (PET)</i>		
Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action		
Opportunities for participatory data collection	Participatory data collection is feasible through direct participation in weather data collection		

Additional information

References	 Błażejczyk, K., Broede, P., Fiala, D., Havenith, G., Holmér, I., Jendritzky, G., Kampmann, B. & Kunert, A. (2010). Principles of the new Universal Thermal Climate Index (UTCI) and its application to bioclimatic research in European scale. Miscellanea Geographica, 14, 91-102.
	Bröde, P., Fiala, D., Błażejczyk, K., Holmér, I., Jendritzky, G., Kampmann, B., Tinz, B. & Havenith, G. (2012). International
	Journal of Biometeorology, 56, 481-494. Fiala, D., Havenith, G., Bröde, P., Kampmann, B & Jendritzky, G. (2011). UTCI-Fiala multi-node model of human temperature regulation and thermal comfort. International Journal of Biometeorology, 56, 429-441.
	Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. Journal of Applied Physiology, 87, 1957–1972.
	Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. International Journal of Biometeorology, 45, 143–159.
	Fiala D, Lomas KJ, Stohrer M (2003) First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE Transactions, 109, 179–186.
	Havenith G, Fiala D, Błażejczyk K, Richards M, Bröde P, Holmér I, Rintamäki H, Benshabat Y, Jendritzky G (2011) The UTCI- Clothing Model. International Journal of Biometeorology, 56, 461-470

6.46 Human comfort: Physiological equivalent temperature (PET)

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Human Comfort: Physiological Equivalent Temperature (PET)		Climate Resilience Natural and Climate Hazards
Description and	Green urban infrastructure can significantly affect climate	
justification	change adaptation by reducing air and surface	