Level of expertise required	Low – for continuous temperature monitoring; Moderate – when using the statistical tools		
Synergies with other indicators	Directly evaluated from <i>Days with temperature > 90th percentile (TX90p)</i> indicato and closely related to <i>Daily temperature range</i> indicator		
Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action		
Opportunities for participatory data collection	Participatory data collection is feasible through direct temperature measurements if these are not automated		
Additional information			
References	 Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason, B., Klein Tank, A. M. G., & Tagipour, A. (2006). Global observed changes in daily climate extremes of temperature and precipitation. <i>Journal of Geophysical Research:</i> <i>Atmospheres, 111</i>, D05109. Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. <i>Journal of Environmental</i> <i>Management, 146</i>, 107-115. ETCCDI. (2009). <i>Climate change indices</i>. Available at: http://etccdi.pacificclimate.org/list_27_indices.shtml 		

6.44 Heatwave incidence

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Ana Ascenso², Silvia Coelho², Ana Isabel Miranda², Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Heatwave incidence expressed as the		Climate Resilience
numbe orf combined tropical nights		Natural and Climate
(>20°C) and hot days (>35°C) per annum		Hazards
Description and justification	Heatwave is a period of prolonged abnormally high surface temperatures relative to those normally expected. Heatwaves can be characterized by low humidity, which may exacerbate drought, or high humidity, which may	

	exacerbate the health effects of heat-related stress such as heat exhaustion, dehydration and heatstroke. Heatwaves in Europe are associated with significant morbidity and mortality. Furthermore, climate change is expected to increase average summer temperatures and the frequency and intensity of hot days (Russo et al., 2014). In cities and urban areas, the UHI tends to exacerbate heatwave episodes.	
Definition	Number of combined tropical nights (>20°C) and hot days (>35°C)	
Strengths and weaknesses	 + Easy and straightforward assessment - Requires substantial amount of external data for modelling 	
Measurement procedure and tool	This indicator is assessed through continuous monitoring of temperature, and/or estimated by applying meteorological models such as the WRF (NCAR & UCAR, n.d.; NOAA, n.d.)	
Scale of measurement	Building/plot to regional scale	
Data source		
Required data	Initial and boundary conditions, topography, land use and urban parameters (building height, width, number of road lanes) (Emmons et al., 2010; Pineda, Jorba, Jorge & Baldasano, 2004). These data can be obtained through national statistics, municipal departments, Corine Land Cover, and a mapping application such as OpenStreetMap.	
Data input type		
Data collection frequency	Annually, and before and after NBS implementation	
Level of expertise required	Low – for continuous temperature monitoring High – for applying meteorological models	
Synergies with other indicators	Assessed from <i>Mean or peak daytime temperature</i> indicator and connected with <i>Urban Heat Island</i> indicator	
Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action	
Opportunities for participatory data collection	Participatory data collection is feasible through sample collection, e.g., air quality measurements if these are not automated	
Additional information		
References	Emmons, L.K., Walters, S., Hess, P.G., Lamarque, JF-, Pfister, G.G., Fillmore, D Kloster, S. (2010). Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). <i>Geoscientific Model</i> <i>Development</i> , <i>3</i> , 43-67.	

National Center for Atmospheric Research (NCAR) & University Corporation for Atmospheric Research (UCAR). (n.d.). Weather Research and Forecasting (WRF) Model Users' Page. Retrieved from <u>http://www2.mmm.ucar.edu/wrf/users/</u>
National Oceanic and Atmospheric Administration (NOAA). (n.d.). Weather Research and Forecasting model coupled to Chemistry (WRF-Chem). Retrieved from <u>https://ruc.noaa.gov/wrf/wrf-chem/</u>
 Pineda, N., Jorba, O., Jorge, J. & Baldasano, J.M. (2004). Using NOAA AVHRR and SPOT VGT data to estimate surface parameters: application to a mesoscale meteorological model. International Journal of Remote Sensing, 25(1), 129–143.
Russo, S., Dosio, A., Graversen, R., Sillmann, J., Carrao, H., Dunbar, M.BVogt, J.V. (2014). Magnitude of extreme heat waves in present climate and their projection in a warming world. Journal of Geophysical Research: Atmospheres, 119(22), 12500–12512.
Weather Research and Forecasting Model (WRF): https://www.mmm.ucar.edu/weather-research-and-forecasting- model

6.45 Human comfort: Universal thermal climate index (UTCI)

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Universal Therma	I Climate Index (UTCI)	Climate Resilience Natural and Climate Hazards Health and Wellbeing
Description and justification	condition with the same ph condition. The UTCI provide reflects the human physiolo dimensional outdoor therm 2012). It can predict both	ermia; heat and cold discomfort), nds and feet cooling and he UTCI include weather