6.42 Days with temperature >90th percentile (TX90p)

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Maria Dubovik¹, Laura Wendling¹, Ville Rinta-Hiiro¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Ana Ascenso², Silvia Coelho², Ana Isabel Miranda², Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Days with temperature >90th percentile (TX90p)		Natural and Climate Hazards
Description and justification	Nature-based solutions can support climate change adaptation by reducing local ambient air temperature. They can also provide insulation from cold and/or shelter from wind. By moderating the urban microclimate, green infrastructure can support reduction in energy use and improved thermal comfort (Demuzere et al., 2014).	
Definition	Percentage of days during temperature (TX) exceeds threshold of the daily max) which the maximum daily 5 the 90 th percentile (TX90p) 4 imum temperature (%)
Strengths and weaknesses	 + Straightforward assessr - Requires statistical tools 	nent of heatwaves occurrence and judgement
Measurement procedure and tool	Ambient air temperature can be assessed through continuous monitoring of temperature, near the NBS intervention area, and evaluation of the maximum daily temperature before and after NBS implementation. Evaluating the effect on the heatwave reduction by assessing the daily temperatures produces more accurate results that monthly averages, which tend to "lose" the small changes that are crucial for several domains, such as health and agriculture (Alexander <i>et al.</i> , 2006). The TX90p defines the occurrence of the extremely hot days falling above the 90 th percentile (1/10 th of the sample) allowing the evaluation of the <i>extent</i> of the extreme temperatures changes (Alexander <i>et al.</i> , 2006). The TX90p is evaluated as $TX_{ij} > TX_{in}90$	
	where	

	TX_{ij} – daily maximum temperature on day <i>i</i> in period <i>j</i> $TX_{in}90$ – calendar day 90 th percentile centred on a five-day window for the base period 1961-1990	
Scale of measurement	Plot to district scale	
Required data	Automated continuous monitoring of ambient air temperature	
Data input type	Quantitative	
Data collection frequency	Annually; at minimum, before and after NBS implementation	
Level of expertise required	Low – for continuous temperature monitoring; Moderate – when using the statistical tools	
Synergies with other indicators	Directly contributes to evaluation of the <i>Warm spell</i> <i>duration index</i> indicator and is closely related to <i>Daily</i> <i>temperature range</i> indicator	
Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action	
Opportunities for participatory data collection	Participatory data collection is feasible through direct temperature measurements if these are not automated	
Additional information		
References	Alexander I. V. Zhang Y. Peterson T. C. Caesar, J. Cleason	

References	Alexander, L. V., Zhang, X., Peterson, T. C., Caesar, J., Gleason,
	B., Klein Tank, A. M. G., & Tagipour, A. (2006). Global
	observed changes in daily climate extremes of temperature
	and precipitation. Journal of Geophysical Research:
	Atmospheres, 111, D05109.
	Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D.,
	Orru, H., Faehnle, M. (2014). Mitigating and adapting to
	climate change: Multi-functional and multi-scale assessment
	of green urban infrastructure. Journal of Environmental
	Management, 146, 107-115.
	ETCCDI. (2009). Climate change indices. Available from:
	http://etccdi.pacificclimate.org/list_27_indices.shtml