6.41 Total Predicted Soil Loss (RUSLE)

Project Name: PHUSICOS (Grant Agreement no. 776681)

Author/s and affiliations: Gerardo Caroppi^{1,2}, Carlo Gerundo², Francesco Pugliese², Maurizio Giugni², Marialuce Stanganelli², Farrokh Nadim³, Amy Oen³

¹ Aalto University, Department of Built Environment, Espoo, Finland (gerardo.caroppi@aalto.fi) ² University of Naples Federico II (UNINA), Department of Civil, Architectural and Environmental Engineering, Naples, Italy

³ Norwegian Geotechnical Institute (NGI), Oslo, Norway

Total Predicted Soil Loss (RUSLE)		Natural and Climate Hazards Green Space Management
Description and justification	Indicators of Soil Physical Resilience sub-criterion will assess if the project scenarios enhance the ability of a soil to resist or recover their healthy state in response to destabilising influences.	
Definition	RUSLE is widely applied to estimate the rate of soil loss by water. The landscape profile is defined by a slope length, which is the length from the origin of overland flow to the point where the flow reaches a major flow concentration or a major area of deposition. The soil loss is an average erosion rate for the landscape profile.	
Strengths and weaknesses		
Measurement procedure and tool	RUSLE (model/survey)	
Scale of measurement	ton/ha/year	
Data source		
Required data	Rain data, soil characteristics, land use information.	
Data input type	Quantitative	
Data collection frequency		
Level of expertise required	High	
Synergies with other indicators		
Connection with SDGs	13	
Opportunities for participatory data collection		

6.42 Days with temperature >90th percentile (TX90p)

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Maria Dubovik¹, Laura Wendling¹, Ville Rinta-Hiiro¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Ana Ascenso², Silvia Coelho², Ana Isabel Miranda², Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Days with tempera (TX90p)	ature >90th percentile Natural and Climate Hazards	
Description and justification	Nature-based solutions can support climate change adaptation by reducing local ambient air temperature. They can also provide insulation from cold and/or shelter from wind. By moderating the urban microclimate, green infrastructure can support reduction in energy use and improved thermal comfort (Demuzere et al., 2014).	
Definition	Percentage of days during which the maximum daily temperature (TX) exceeds the 90 th percentile (TX90p) threshold of the daily maximum temperature (%)	
Strengths and weaknesses	 + Straightforward assessment of heatwaves occurrence - Requires statistical tools and judgement 	
Measurement procedure and tool	Ambient air temperature can be assessed through continuous monitoring of temperature, near the NBS intervention area, and evaluation of the maximum daily temperature before and after NBS implementation. Evaluating the effect on the heatwave reduction by assessing the daily temperatures produces more accurate results that monthly averages, which tend to "lose" the small changes that are crucial for several domains, such as health and agriculture (Alexander <i>et al.</i> , 2006). The TX90p defines the occurrence of the extremely hot days falling above the 90 th percentile (1/10 th of the sample) allowing the evaluation of the <i>extent</i> of the extreme temperatures changes (Alexander <i>et al.</i> , 2006). The TX90p is evaluated as $TX_{ij} > TX_{in}90$ where	