6.38 Soil mass movement

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹,

Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Soil mass movement Natural and Climate Hazards			
Description and justification	Soil mass movement indicates instability and existence of a range of natural hazards including landslides, rockfalls, avalanches, debris flows, and similar.		
Definition	Soil mass movement, also called soil mass wasting comprises bulk movements of soil and rock debris down slopes in response to the pull of gravity, water or the rapid or gradual sinking of the Earth's ground surface in a predominantly vertical direction.		
Strengths and weaknesses	+: mass movement observation methods exist in a more or less standardised form for a very long time -: some movements are too slow to be observed with a naked eye, and some are too fast to allow appropriate reaction.		
Measurement procedure and tool	Usually using some form of survey (photogrammetric, lidar, etc) at regular/irregular intervals, but also analysis of history of instability, photographic/media records. Local measurements of soil mass movement can be carried out using inclinometers and/or piezometers installed to a certain depth in the soil suspected of mass movement.		
Scale of measurement	Micro to macro		
Data source			
Required data	Quantitative, numerical values of velocity of movement, depth of movement, and/or profile of moving mass		
Data input type	numerical		
Data collection frequency	continuous		
Level of expertise required	Medium to high		
Synergies with other indicators	Soil type, soil strength, history of instability, moisture content, groundwater level, topography, rainfall, temperature		
Connection with SDGs	11, 13, 15, 17		

Opportunities for participatory data collection	Yes for data collection and reporting	
Additional information		
References	Gonzalez-Ollauri, A. and Mickovski, S.B., 2017. Plant-Best: A novel plant selection tool for slope protection. Ecological Engineering 106 (2017) 154–173.	

6.39 Velocity of occurred landslide

Project Name: PHUSICOS (Grant Agreement no. 776681)

Author/s and affiliations: Gerardo Caroppi^{1,2}, Carlo Gerundo², Francesco Pugliese², Maurizio Giugni², Marialuce Stanganelli², Farrokh Nadim³, Amy Oen³

³ Norwegian Geotechnical Institute (NGI), Oslo, Norway

Velocity of Occurred Landslide		Natural and Climate Hazards	
Description and justification	Indicators of Landslide Risk Resilience sub-criterion will assess the site response to landslide phenomena based on susceptibility indicators: slope angle, pore water pressure, groundwater depth, soil properties, land use, land cover.		
Definition	Factor having significant relevance in the landslide classification. A velocity range is connected to the different types of landslides, on the basis of observation of either case histories or site observations (Cruden & Varnes, 1996).		
Strengths and weaknesses			
Measurement procedure and tool	Model		
Scale of measurement	m/s		
Data source			
Required data	Geological and geotechn (Model/Survey).	ical information, topography	
Data input type	Quantitative		
Data collection frequency			

¹ Aalto University, Department of Built Environment, Espoo, Finland (gerardo.caroppi@aalto.fi)

² University of Naples Federico II (UNINA), Department of Civil, Architectural and Environmental Engineering, Naples, Italy