Additional information				
References	 Mickovski S.B., Santos O., Ingunza P.M.D., Bressani L.2015. Coastal slope instability in contrasting geo-environmental conditions. In: Geotechnical Engineering for Infrastructure and Development - Proc. XVI European Conference for Soil Mechanics and Geotechnical Engineering, Edinburgh, Scotland, September 2015: 1801-1806. 			

6.36 Occurred landslide area

Project Name: PHUSICOS (Grant Agreement no. 776681)

Author/s and affiliations: Gerardo Caroppi^{1,2}, Carlo Gerundo², Francesco Pugliese², Maurizio Giugni², Marialuce Stanganelli², Farrokh Nadim³, Amy Oen³

¹ Aalto University, Department of Built Environment, Espoo, Finland (gerardo.caroppi@aalto.fi) ² University of Naples Federico II (UNINA), Department of Civil, Architectural and Environmental Engineering, Naples, Italy

³ Norwegian Geotechnical Institute (NGI), Oslo, Norway

Occurred Landslide Area		Natural and Climate Hazards
Description and justification	Indicators of Landslide Risk Resilience sub-criterion will assess the site response to landslide phenomena based on susceptibility indicators: slope angle, pore water pressure, groundwater depth, soil properties, land use, land cover.	
Definition	Represents the observe of a mass of rock, earth by the surface subjecte landslide risk obtained percentage). The main the effectiveness of the the entire or the partial area.	ed surface which moves downward n, or artificial fill on a slope divided d to the high and medium by analytical modelling (in scopes of the index is to assess adopted design solution for either area referred to the total risk
Strengths and weaknesses	Relatively easy to estim	nate.
Measurement procedure and tool	This indicator can be es observational considera	stimated from both analytical and ations.
Scale of measurement	Dimensionless, %	
Data source		
Required data	Geological and geotech (Model/Survey).	nical information, topography

Data input type	Quantitative	
Data collection frequency		
Level of expertise required	High	
Synergies with other indicators		
Connection with SDGs	13	
Opportunities for participatory data collection		
Additional information		
References		

6.37 Landslide risk – Digital elevation/terrain modelling

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹, Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Topography (digital elevation/ terrain models)		Natural and Climate Hazards
Description and justification	Topography and relief of a slope are needed as a basis for the assessment of the stability of the terrain where the NBS will be built or operated in. It is also needed for siting and conceptual design of NBS against any form of natural or climate hazard.	
Definition	Digital elevation model (DEM), digital terrain model (DTM) or digital surface model (DSM) is a 3D CG representation of a terrain's surface created from a terrain's elevation data.	
Strengths and weaknesses	+: DTMs exist globally (pro CGIAR, Spot Image, etc); a topographical attributes suc curvature exist. DTMs can b Topographic indices related dynamics are available and	vided by: BGS, USGS, ERSDAC, Igorithms to retrieve th as slope gradient, aspect, and be used for digital soil mapping. to landscape ecology and need DTM-derived information.