Synergies with other indicators	Soil strength, soil type, aggregate stability, soil matric suction, plant evapotranspiration		
Connection with SDGs	11, 13, 15, 17		
Opportunities for participatory data collection	Yes.		
Additional information			
References	 Gonzalez-Ollauri, A. and Mickovski, S.B., 2017. Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology, 549 (374–387) White, B., Ogilvie, J., Campbell, D.M.H., Hiltz, D., Gauthier, B., Chisholm, H.K.H., Wen, H.K., Murphy, N.C., Arp, P.A., 2012. Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Can. Water Resour. J. 37 (4), 333–347. 		

6.33 Shallow landslide risk – slope stability factor of safety

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹, Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Slope instability risk (factor of safety)		Natural and Climate Hazards
Description and justification	The engineering stability of slopes is based on calculation of a factor of safety, where FoS=1 denotes a failing slope, FoS<1 unstable slope, while FoS>1 a stable slope. The calculation is based on Limit Equilibrium of forces and overturning moments acting on a limited mass of soil.	
Definition	A ratio between the stabilising and destabilising forces/moments acting on a limited mass of soil.	
Strengths and weaknesses	 +: number of standardised methods and approaches exist; software for calculation exists -: the factor is based on a 2D analysis of a cross-section of a slope and potential local variations in the soil/water properties can affect it. 	
Measurement procedure and tool	entering a closed mathem Commercial and free soft	s need to be derived before aatical solution for computation. ware exists for calculation and ased on methods and approaches

	standardised, among others, with the European Standards (Eurocodes)	
Scale of measurement	Meso-scale (slope scale)	
Data source		
Required data	Soil strength/physical parameters, ground water parameters, vegetation parameters	
Data input type	Numerical, quantitative data input into a software package	
Data collection frequency	Ideally continuous	
Level of expertise required	High	
Synergies with other indicators	Soil strength, Soil matric suction, water retention, soil type, vegetation coverage, vegetation cover, ground water table level	
Connection with SDGs	11,13,15,17	
Opportunities for participatory data collection	Yes, through continuous sampling and monitoring	
Additional information		
References	EN ISO 1997 parts 1 and 2	

6.34 Landslide safety factor

Project Name: PHUSICOS (Grant Agreement no. 776681)

Author/s and affiliations: Gerardo Caroppi^{1,2}, Carlo Gerundo², Francesco Pugliese², Maurizio Giugni², Marialuce Stanganelli², Farrokh Nadim³, Amy Oen³

¹ Aalto University, Department of Built Environment, Espoo, Finland (gerardo.caroppi@aalto.fi) ² University of Naples Federico II (UNINA), Department of Civil, Architectural and Environmental Engineering, Naples, Italy

³ Norwegian Geotechnical Institute (NGI), Oslo, Norway

Landslide Safety Factor		Natural and Climate Hazards	
Description and	Indicators of Landslide Risk Resilience sub-criterion will		
justification	assess the site response to landslide phenomena based on		
	susceptibility indicators: slope angle, pore water pressure,		
	groundwater depth, soil	properties, land use, land cover.	