Opportunities for participatory data collection	Yes.			
Additional information				
References	Gonzalez-Ollauri. A., Stokes, A., Mickovski, S.B., 2020. A novel framework to study the effect of tree architectural traits on stemflow yield and its consequences for soil-water dynamics. Journal of Hydrology, 582 (124448)			

6.32 Level of Groundwater Table

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹, Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Ground water table level		Natural and Climate Hazards		
Description and justification	Depth below ground surface at which the ground water exists. Higher levels cause more instability, lower levels increase strength and resistance to erosion and landslides.			
Definition	The amount of water in storage in the monitored aquifer. When recharge exceeds natural discharge plus abstraction, groundwater levels rise. When recharge is less than natural discharge plus abstraction, groundwater levels fall.			
Strengths and weaknesses		t methods exist; cartographic redict depth of water table e investigation is needed		
Measurement procedure and tool	Trial pits or boreholes exc measurement/monitoring dipmeter / piezometer	avated and carried out in situ using a		
Scale of measurement	Micro / point measuremer	nt		
Data source				
Required data	Levels [m] below ground surface			
Data input type	Height [m] above datum			
Data collection frequency	Periodic, continuous			
Level of expertise required	Low			

Synergies with other indicators	Soil strength, soil type, aggregate stability, soil matric suction, plant evapotranspiration		
Connection with SDGs	11, 13, 15, 17		
Opportunities for participatory data collection	Yes.		
Additional information			
References	 Gonzalez-Ollauri, A. and Mickovski, S.B., 2017. Hydrological effect of vegetation against rainfall-induced landslides. Journal of Hydrology, 549 (374–387) White, B., Ogilvie, J., Campbell, D.M.H., Hiltz, D., Gauthier, B., Chisholm, H.K.H., Wen, H.K., Murphy, N.C., Arp, P.A., 2012. Using the cartographic depth-to-water index to locate small streams and associated wet areas across landscapes. Can. Water Resour. J. 37 (4), 333–347. 		

6.33 Shallow landslide risk – slope stability factor of safety

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹, Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Slope instability risk (factor of safety)		Natural and Climate Hazards
Description and justification	The engineering stability of slopes is based on calculation of a factor of safety, where FoS=1 denotes a failing slope, FoS<1 unstable slope, while FoS>1 a stable slope. The calculation is based on Limit Equilibrium of forces and overturning moments acting on a limited mass of soil.	
Definition	A ratio between the stabilising and destabilising forces/moments acting on a limited mass of soil.	
Strengths and weaknesses	 +: number of standardised methods and approaches exist; software for calculation exists -: the factor is based on a 2D analysis of a cross-section of a slope and potential local variations in the soil/water properties can affect it. 	
Measurement procedure and tool	entering a closed mathem Commercial and free soft	s need to be derived before aatical solution for computation. ware exists for calculation and ased on methods and approaches