ecosystem-based adaptation perspective. *Hydrology Research*, *45*(6), 774-787.

6.24 Peak flow rate

Project Name: PHUSICOS (Grant Agreement no. 776681)

Author/s and affiliations: Gerardo Caroppi^{1,2}, Carlo Gerundo², Francesco Pugliese², Maurizio Giugni², Marialuce Stanganelli², Farrokh Nadim³, Amy Oen³

¹ Aalto University, Department of Built Environment, Espoo, Finland (gerardo.caroppi@aalto.fi) ² University of Naples Federico II (UNINA), Department of Civil, Architectural and Environmental Engineering, Naples, Italy

³ Norwegian Geotechnical Institute (NGI), Oslo, Norway

Peak Flow Rate	Natural and Climate Hazards	
Description and justification	Indicators of Flooding Risk Resilience sub-criterion will assess the site response to Flooding phenomena based on susceptibility indicators: land use cover, run-off coefficient, rainfall intensity and duration.	
Definition	Maximum rate of discharge during the period of runoff caused by a rainfall event. For a time period of <i>T</i> years, the <i>T</i> years-recurrence peak flow Q_T is defined as a value of discharge, which occurs statistically each <i>T</i> years. More precisely, Q_T is defined by the fact that probability to have a maximal annual discharge greater than Q_T is equal to 1/T. It is influenced by both the basin (size, shape, geographical location, topography, geology, type of vegetal cover, extent of surface detention) and the rainfall event characteristics (intensity, duration, spatial and temporal distribution pattern, storm direction).	
Strengths and weaknesses		
Measurement procedure and tool	The peak flow can be estimated by applying two main approaches: probabilistic and deterministic models. Probabilistic models are based on statistical inference which essentially estimates the design variables by fitting the observed data. Deterministic models are based upon the peak flow estimation through analytical relationships and provide a point estimate without uncertainty assessment. Rainfall-Runoff models are applicable to estimate the peak flow. These are usually applied when flow observations are not available and, thus, they require the use of rainfall data (more easily available) to quantify the required data.	

Scale of measurement	m³/s	
Data source		
Required data	Rainfall data, hydraulic, geological and geotechnical information, topography (Model/Survey).	
Data input type	Quantitative	
Data collection frequency		
Level of expertise required	High	
Synergies with other indicators		
Connection with SDGs	13	
Opportunities for participatory data collection		
Additional information		
References		

6.25 Peak flood volume

Project Name: PHUSICOS (Grant Agreement no. 776681)

Author/s and affiliations: Gerardo Caroppi^{1,2}, Carlo Gerundo², Francesco Pugliese², Maurizio Giugni², Marialuce Stanganelli², Farrokh Nadim³, Amy Oen³

¹ Aalto University, Department of Built Environment, Espoo, Finland (gerardo.caroppi@aalto.fi) ² University of Naples Federico II (UNINA), Department of Civil, Architectural and Environmental Engineering, Naples, Italy

³ Norwegian Geotechnical Institute (NGI), Oslo, Norway

Peak flood volume	9	Natural and Climate Hazards
Description and justification	Indicators of Flooding Risk Resilience sub-criterion will assess the site response to Flooding phenomena based on susceptibility indicators: land use cover, run-off coefficient, rainfall intensity and duration.	
Definition	flow. Flood volumes are rela	vater corresponding to the peak ated to 1) the time scales of the fall, snowmelt) and 2) the time