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Reduction of inundation risk for critical 
urban infrastructures (probability-
economic) (Applied and EO/RS combined) 

Natural and Climate 
Hazards 

Description and 
justification 

Metrics are based on the quantification of infrastructure 
that has a reduced risk of flooding due to NBS 
implementation. Ultimately, this relates to a reduced 
economic cost of flooding, or increased health & wellbeing 
of communities due to reduced stress levels associated with 
flooding or risk of flooding. It should be noted that, if NBS 
is poorly designed or well-designed but poorly constructed, 
it has the potential to lead to increased local flooding risk 
for some areas. Advances in remote sensing technology 
and new satellite platforms such as ALOS sensors have 
widened the application of satellite data, for instance to 
validate flood inundation models. Flood modelling based on 
remote sensing rainfall data will be useful for developing 
regional flood early-warning and flood mitigation systems 
in flood hazardous areas. 
Reduction in flood-risk by nature-based solutions 
simulation can be used to: 

• Support the development of strategic plans for NBS 
implementation to reduce flood risk and comply 
with Flood Risk Management; 

• Predict the impact of individual NBS projects; 
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• Quantify the predicted impact of implemented NBS; 
• Promote stakeholder engagement in NBS planning; 
• Support the leveraging of finances necessary for 

delivering NBS projects. 

Definition Probability of a reduction of inundation risk for critical 
urban infrastructures based on more applied and 
participatory hydraulic modelling and GIS assessment. 

Strengths and 
weaknesses 

Applied methods: Robustness of evidence depends upon 
the level of precision of the simulation software and the 
data analysed. Typically, simulations requiring the most 
basic data input are associated with the least precise 
results. This is not always the case, however, and model 
validation (either through real-world testing or validation 
against other models) is recommended. 
EO/RS methods: There are some limitations/barriers to 
the reliability of the evidence generated. This includes the 
expense associated with the most high-resolution satellite 
images when financial resources are scarce, or when 
images are not available on the study area. In addition, 
some areas can be covered with clouds causing a partial 
loss of information. The presence of dense urban areas and 
forests also affect both SAR and multispectral based flood 
mapping and requires a more-complex data processing 
which is not straightforward to accomplish with a user-
friendly approach.  
High spatial resolution is a key factor when mapping floods 
in dense urban areas, and it is one of the limitations of the 
free of charge satellite data approach. These services 
provide rapid mapping products that can be affected by 
uncertainty and are not always validated. Maps of flooded 
areas produced by official authorities and based on bespoke 
aerial photos and field surveys are more accurate, although 
they are time-consuming and require higher costs to be 
generated. Based on experience, however, on-demand high 
costs, high resolution data and field surveys are often 
necessary to ensure reliability of evidence. 

Measurement 
procedure and 
tool 

A variety of methods exist from applied/public participation 
techniques through to earth observation/remote sensing 
approaches. For further details on measurement tools and 
metrics, including those adopted by past and current EU 
research and innovation projects, refer to Connecting 
Nature Indicator Metrics Reviews Env19_Applied and 
Env19_RS. 

Scale of 
measurement 

Applied methods: Simulations are typically carried out on 
catchment scales identifying flood risk areas under different 
climate scenarios. Local impacts can also be modelled to 
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assess impacts on storm sewer systems and local flood risk 
areas. 
EO/RS methods: Can be applied at various geographical 
scales, but is most commonly applied at a catchment scale. 

Data source 

Required data Required data will depend on selected methods, for further 
details on applied and earth observation/remote sensing 
metrics refer to Connecting Nature Indicator Metrics 
Reviews Env19_Applied and Env19_RS. 

Data input type Data input types will be depend on selected methods, for 
further details on applied or earth observation/remote 
sensing metrics refer to Connecting Nature Indicator 
Metrics Reviews Env19_Applied and Env19_RS. 

Data collection 
frequency 

Data collection frequency will be depend on selected 
methods, for further details on applied or earth 
observation/remote sensing metrics refer to Connecting 
Nature Indicator Metrics Reviews Env19_Applied and 
Env19_RS.  

Level of 
expertise 
required 

Applied methods: Expertise required is very much based 
on the complexity of the data requirements of the model. 
Very basic models exist that require very low levels of 
expertise and are ideal for use as community engagement 
tools. To maximise the value of participatory approaches, 
experience of managing such projects is beneficial. 
EO/RS methods: There a semi-automatic method for 
flood mapping, based only on free satellite images and 
open-source software. The proposed method is suitable to 
be applied by the community involved in flood hazard 
management, not necessarily experts in remote sensing 
processing. Much of the freely available data is available 
with the first level of atmospheric or radiometric 
calibration, allowing their use by different types of users 
and not only experts in remote sensing processing. In 
addition, free GIS plugins allow the downloading and 
processing of free multispectral satellite images. The 
availability of these resources is useful for the management 
of natural hazard effects. However, expertise will be 
needed in order to improve and manually refine the 
automatic mapping using free ancillary data such as the 
digital elevation model-based water depth model and 
available ground truth data. 

Synergies with 
other indicators 

Applied methods: Simulation software often characterises 
multiple benefits of NBS implementation, often including 
impacts on water quality. Flood risk prediction also has 
synergies with the economic cost of such flooding, 
particularly in relation to insurance values. Flood risk 
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reduction can also be related to health & wellbeing 
indicators associated with the stress caused by flood risk to 
properties, business and other infrastructure. 
EO/RS methods: Synergies exist between floods, climate 
change adaptation and disaster risk reduction. Synergies 
between managing flood risk, reaching or maintaining a 
good ecological status, promoting of ecosystem services 
and safeguarding the nature or ecosystem services in 
floodplains can be very complex. 

Connection with 
SDGs 

All except SDG2, SDG5 and SDG12: Decreasing costs 
associated with insurance risk; Decreased stress, health 
risk and physical risk; Links to environmental education; 
Possible cleaner water co-benefit; Decrease risk to energy 
infrastructure; Job creation; Reduced infrastructure risk; 
Green infrastructure development; Social equality in 
relation to flood risk; Sustainable urban development; 
Climate change adaptation; More sustainable water 
management; Habitat enhancement/creation; 
Environmental Justice; Opportunities for collaborative 
working. 

Opportunities for 
participatory 
data collection 

Applied methods Opportunities are available for a 
participatory process, particularly in relation to stakeholder 
decision-making (Voinov and Gaddis 2008; Voinov et al. 
2016; Gray et al. 2018) and or data-gathering through 
ICT-enabled citizen observatories (When et al. 2015). 
Involving stakeholders through active participation can 
increase the legitimacy of risk processes, public 
acceptance, commitment, and support with respect to 
decision-making processes (Inam et al. 2017). 
EO/RS methods: To assess flood risk at a neighbourhood 
level, accurate data on flood extent, exposure and 
vulnerability is required. One of the possible and useful 
ways to obtain these data is a combination of remote 
sensing data and local knowledge through participatory 
processes. Further detail can be found on participatory 
processes in Env19_Applied. 

Additional information 
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Mean number of people adversely affected 
by natural disasters each year 

Natural and Climate 
Hazards 

Description and 
justification 

This indicator is closely related to the previous indicator 
on the costing of natural hazards / disasters, but 
specifically addresses the problem that while intangible 
costs are important in relation to assessing impacts of 
natural disasters they may be difficult to assign an 
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