4.45 Eutrophication

Project Name: proGIreg (Grant Agreement no. 776528)

Author/s and affiliations: Gabriele Guidolotti¹, Chiara Baldacchini^{1,2}, Carlo Calfapietra¹

¹Consiglio Nazionale delle Ricerche, Italy ²Università degli Studi della Tuscia, Viterbo, Italy

Eutrophication	Water Management		
Description and justification	Eutrophication is probably the most serious environmental problem affecting water reservoirs. Excessive nutrient input (mainly nitrogen and phosphorus) lead to an overgrowth of biomass that affect water dissolved oxygen, water transparency with a negative impact on human and animal health.		
Definition	The water eutrophication level will be evaluated by a Set Pair Analysis of 5 indices		
Strengths and weaknesses	A strength of this indicator is that reduce uncertainties for eutrophication level.		
Measurement procedure and tool	Total nitrogen, total phosphorus, chlorophyll concentration, dissolved oxygen, will be used in a Set Pair Analysis to detect a eutrophication level		
Scale of measurement	NBS Level		
Data source			
Required data	concentration of total nitrogen, total phosphorus, chlorophyll concentration, dissolved oxygen		
Data input type	Discrete variables		
Data collection frequency	Pre and post implementation data collection		
Level of expertise required	High		
Synergies with other indicators	This indicator is related to other indicators of environmental benefit		
Connection with SDGs	Sustainable consumption and production: The implementation of nature-based solutions contributes to "doing more and better with less," net welfare gains from		

	economic activities can increase by reducing resource use, degradation and pollution along the whole life cycle.	
Opportunities for participatory data collection		
Additional information		
References	Wu, F. F., and Xu Wang. "Eutrophication evaluation based on set pair analysis of Baiyangdian Lake, North China." Procedia Environmental Sciences 13 (2012): 1030-1036.	

4.46 pH of NBS effluents

Project Name: UNaLab (Grant Agreement no. 730052) and PHUSICOS (Grant Agreement no. 776681)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça², Gerardo Caroppi^{3,4}, Carlo Gerundo⁴, Francesco Pugliese⁴, Maurizio Giugni⁴, Marialuce Stanganelli⁴, Vittoria Capobianco⁵, Farrokh Nadim⁵, Amy Oen⁵

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

³ Aalto University, Department of Built Environment, Espoo, Finland (gerardo.caroppi@aalto.fi)

⁴ University of Naples Federico II (UNINA), Department of Civil, Architectural and Environmental Engineering, Naples, Italy

⁵ Norwegian Geotechnical Institute (NGI), Oslo, Norway

pH of the NBS effluents		Water Management
Description and justification	Water quality can profoundly impact both aquatic and terrestrial ecosystems. Changes to the quality of water may occur due to many different factors, including human activities. It is therefore important to monitor water quality in environments likely to be affected by anthropogenic activity, or in particularly sensitive aquatic ecosystems. Basic water quality parameters include pH, temperature, electrical conductivity (EC), dissolved oxygen (DO) content and flow rate.	
Definition	A measure of the relative acidit (0-14 pH units). The pH of a satisfy of the concentration of hydrogen	mple of water is a measure
Strengths and weaknesses	+ An easy and straightforward+ Can be automated to ensure	