Operation of Water Resources Systems (Proceedings of Rabat Symposium S3, April 1997). IAHS Publ. no. 242, 1997.

4.18 Height of flood peak and time to flood peak measurement

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Height of flood peak Time to flood peak		Water Management Natural and Climate Hazards
Description and justification	Rapid urbanisation and industrialisation have led to reduced vegetative cover and decreased water storage in the subsurface, as well as the concentration and accumulation of surface runoff in sewage systems due to reduced infiltration into the soil. As a result, the volume of surface runoff as well as the velocity and time to peak storm runoff and baseflow are all increased. Urbanisation also reduces the land coverage of forests and vegetation that help to dissipate the flow energy (Devi, Ganasri & Dwarakish, 2015; Liu, Gebremeskel, De Smedt, Hoffman & Pfister, 2004). The detrimental effects of urbanisation on hydrologic systems are expected to increase in the future due to both increasing urbanisation as well as changes to the global climate, including rising sea levels, glacial retreat, changing precipitation patterns and an increasing frequency of extreme events (Kiehl, 2011).	
Definition	Flood peak height is th a flood hydrograph (de (m ³ /s, cfs, L/s or simila Time to flood peak (h)	e highest point of the rising limb of scribing discharge over time) ar units)
Strengths and weaknesses	 + Straightforward assectanges in the local lar imperviousness) had a runoff - Requires <i>in situ</i> meas 	essment of degree to which the nd-use (i.e., change in n effect on reducing/promoting surements
Measurement procedure and tool	Assessment of the effectiveness of flood management methods can be performed by different methods. For example, the assessment of runoff can be performed by	

	in situ measurements before and after construction of a flood management structure.	
	In the studies reviewed by Iacob et al. (2014), the assessment of natural management methods was performed either by hydrologic and hydraulic modelling or by direct monitoring. Parameters used for the assessment of the performance of natural flood management measures were: (a) flood peak reduction for different flood event return periods (e.g., 1, 2, 25, 50, or 100 years);	
	(b) increase in time to flood peak;(c) decrease in annual probability of flood risk for the selected area.	
Scale of measurement	Site to catchment scale	
Data source		
Required data	In situ runoff measurements	
Data input type	Quantitative	
Data collection frequency	At the time of precipitation events and/or daily, monthly and yearly continuous monitoring before and after construction of the area and/or installation of NBS	
Level of expertise required	Moderate	
Synergies with other indicators	Direct relationship to <i>Surface runoff in relation to</i> <i>precipitation quantity</i> indicator, and partial relationship to <i>Measured infiltration rate and capacity</i> and <i>Evapotranspiration rate</i> indicators	
Connection with SDGs	SDG 6 Clean water and sanitation, SDG 11 Sustainable cities and communities	
Opportunities for participatory data collection	No opportunities identified	
Additional information		
References	Iacob, O., Rowan, J.S., Brown, I.M., & Ellis, C. (2014). Evaluating wider benefits of natural flood management strategies: An ecosystem-based adaptation perspective. <i>Hydrology</i> <i>Research</i> , 45(6), 774-787.	