- Costello, L.R., Matheny, N.P., Clark, J.R., & Jones, K.S. (2000). *A* guide to estimating irrigation water needs of landscape plantings in California, the landscape coefficient method and WUCOLS III. Berkeley, CA, USA: University of California Cooperative Extension, California Department of Water Resources. <u>https://ucanr.edu/sites/WUCOLS/</u>
- Litvak, E., Manago, K.F., Hogue, T.S., & Pataki, D.E. (2016). Evapotranspiration of urban landscapes in Los Angeles, California at the municipal scale. *Water Resources Research*, 53(5), 4236-4252.
- Litvak, E. & Pataki, D.E. (2016). Evapotranspiration of urban lawns in a semi-arid environment: An in situ evaluation of microclimatic conditions and watering recommendations. *Journal of Arid Environments*, 134, 87-96.
- Snyder, R.L., Pedras, C., Montazar, A., Henry, J.M., & Ackley, D.
 (2015). Advances in ET-based landscape irrigation management. *Agricultural Water Management*, 147, 187-197

4.16 Peak flow variation

Project Name: Nature4Cities (Grant Agreement no. 730468)

Author/s and affiliations: Katia Chancibault¹, Fabrice Rodriguez, Stéphanie Decker²

¹ LUNAM, IFSTTAR, GERS, LEE, route de Bouaye CS4, 44344 Bouguenais, France; <u>katia.chancibault@ifsttar.fr</u>

² NOBATEK/INEF4, 67 Rue de Mirambeau, 64600 Anglet, France

Peak Flow Variation		Water Management
Description and justification	 The peakflow is the maximum value of the flowrate due to a given rain event. It indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. It can be used to : assess one NBS type benefit assess the impact of a combination of NBS set on one large catchment 	
Definition	Peakflow variation is defined by the relative error in peakflow between the peakflow of the catchment with NBS and the peakflow of a catchment without NBS (% (but flowrates are in I/s or I/s/ha (in case of different catchments comparison))).	
Strengths and weaknesses	This indicator will directly assess the impact of NBS in the reduction of the flowrate, which peakflow is a characteristic value.	

 series (typically one year) and may be obtained with observed runoff (if pre- and post- NBS setting is available) or simulated runoff (Nature4Cities, D2.1). Calculation method : measurement and modelling for evaluation of greening scenarios over a defined period Required tool : hydrological model for NBS scenario evaluation It can be calculated by HYDRUS-1D/2D, URBS, and TEB-Hydro, models respectively at the object, neighbourhood and city scales (Nature4Cities, D2.2). observations (with and without NBS) Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stornwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Staropulos-Lafaille et al, 2018) was applied at	Measurement procedure and	This indicator can be calculated as the average value of a sample of peakflows deduced from a rain/runoff time		
 available) or simulated runoff (Nature4Cities, D2.1). Calculation method : measurement and modelling for evaluation of greening scenarios over a defined period Required tool : hydrological model for NBS scenario evaluation It can be calculated by HYDRUS-1D/2D, URBS, and TEB- Hydro, models respectively at the object, neighbourhood and city scales (Nature4Cities, D2.2). observations (with and without NBS) Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Staropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Street trees reexparins	tool	series (typically one year) and may be obtained with		
 Calculation method : measurement and modelling for evaluation of greening scenarios over a defined period Required tool : hydrological model for NBS scenario evaluation It can be calculated by HYDRUS-1D/2D, URBS, and TEB-Hydro, models respectively at the object, neighbourhood and city scales (Nature4Cities, D2.2). observations (with and without NBS) Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessment of this indicator. Called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated. NES. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		available) or simulated runoff (Nature4Cities, D2.1).		
 evaluation of greening scenarios over a defined period Required tool : hydrological model for NBS scenario evaluation It can be calculated by HYDRUS-1D/2D, URBS, and TEB- Hydro, models respectively at the object, neighbourhood and city scales (Nature4Cities, D2.2). observations (with and without NBS) Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafallie et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks		Calculation method : measurement and modelling for		
Required tool : • hydrological model for NBS scenario evaluation It can be calculated by HYDRUS-1D/2D, URBS, and TEB-Hydro, models respectively at the object, neighbourhood and city scales (Nature4Cities, D2.2). • observations (with and without NBS) Data sources: • Hydrological modelling • Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: • Gardens and parks Street tree scenarios		evaluation of greening scenarios over a defined period		
 hydrological model for NBS scenario evaluation It can be calculated by HYDRUS-1D/2D, URBS, and TEB- Hydro, models respectively at the object, neighbourhood and city scales (Nature4Cities, D2.2). observations (with and without NBS) Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		Required tool :		
It can be calculated by HYDRUS-1D/2D, URBS, and TEB- Hydro, models respectively at the object, neighbourhood and city scales (Nature4Cities, D2.2). • observations (with and without NBS) Data sources: • Hydrological modelling • Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: • Gardens and parks • Street tree scenarios		hydrological model for NBS scenario evaluation		
 Hydro, models respectively at the object, neighbourhood and city scales (Nature4Cities, D2.2). observations (with and without NBS) Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		It can be calculated by HYDRUS-1D/2D, URBS, and TEB-		
 and city scales (Nature4Cities, D2.2). observations (with and without NBS) Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Street tree scenarios		Hydro, models respectively at the object, neighbourhood		
 Observations (with and without NBS) Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Street tree scenarios 		and city scales (Nature4Cities, D2.2).		
 Data sources: Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks 		observations (with and without NBS)		
 Hydrological modelling Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks 		Data sources:		
 Measurement/Monitoring Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks 		Hydrological modelling		
 Data required for the estimation of the indicator have to be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Starropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Street tree scenarios 		Measurement/Monitoring		
 be calculated either from a model, or from monitoring. In case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Street tree scenarios 		Data required for the estimation of the indicator have to		
 case of model estimation, it requires input data provided by national meteorological services (typically rainfall and potential evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		be calculated either from a model, or from monitoring. In		
 by haterial evapotranspiration). In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		by pational meteorological services (typically rainfall and		
In case of model estimation, once meteorological data is available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: • Gardens and parks • Street tree scenarios		potential evapotranspiration).		
 available, calculation makes it necessary to run the appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		In case of model estimation, once meteorological data is		
 appropriate hydrological model. Then the indicator can be estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		available, calculation makes it necessary to run the		
estimated from the model results by standard software. Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios		appropriate hydrological model. Then the indicator can be		
Nature4Cities built a simplified model for early stage assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: • Gardens and parks • Street tree scenarios		estimated from the model results by standard software.		
 assessement of this indicator called PFVar (Nature4Cities, D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		Nature4Cities built a simplified model for early stage		
 D2.4). The PFVar highlights the peak flow variation between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		assessement of this indicator called PFVar (Nature4Cities,		
 between two stages with or without NBS. It is expressed in percentage and is calculated for Garden and parks, street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		D2.4). The PFVar highlights the peak flow variation		
street trees and greenroofs. For the two later, the calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks		between two stages with or without NBS. It is expressed		
 calculation needs more evaluation. Such a KPI indicates how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		street trees and greenroofs. For the two later, the		
 how much the discharge in a river or a stormwater network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		calculation needs more evaluation. Such a KPI indicates		
network is impacted by the use of NBS. Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks		how much the discharge in a river or a stormwater		
Based on the study of two spatial scales (catchment and city) by the mean of two different urban hydrological models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks		network is impacted by the use of NBS.		
models. The model URBS (Rodriguez et al, 2008) was applied at the catchment scale while the model TEB- Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks		Based on the study of two spatial scales (catchment and city) by the mean of two different urban bydrological		
 applied at the catchment scale while the model TEB-Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		models. The model URBS (Rodriguez et al. 2008) was		
 Hydro (Stavropulos-Lafaille et al, 2018) was applied at the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		applied at the catchment scale while the model TEB-		
 the City scale. An equation is deduced from regression method for each following studied NBS: Gardens and parks Street tree scenarios 		Hydro (Stavropulos-Lafaille et al, 2018) was applied at		
Gardens and parks Street tree scenarios		the City scale. An equation is deduced from regression		
Street tree scenarios		Gardens and parks		
		Street tree scenarios		
Green Roofs		Green Roofs		

Database used to build the model is composed of data that were collected during the project VegDUD (financed by the French research agency from 2010 to 2013) and measured data from ONEVU (Nantes Urban Environment Observatory) (Nature4Cities, D2.3).	
 ☑ City ☑ Neighbourhood/catchment ☑ Object 	
 Flowrate data (in case of observed coefficient estimation) in pre- and post-NBS setting Simulated flowrates (in case of simulated coefficient estimation) 	
Quantitative	
It can be calculated before an urban planning option in order to evaluate its impact	
Easy to calculate but requires data. This indicator reveals a potential indirect effect. Both decision makers and citizens are probably not familiar with this indicator and needs to be trained.	
Synergies with other hydrological modelling indicators and greenspace mapping indicators.	
ion	
 Rodriguez, F., Andrieu, H., Morena, F., 2008. A distributed hydrological model for urbanized areas – Model development and application to case studies. J. Hydrol. 268– 287. <u>https://doi.org/10.1016/j.jhydrol.2007.12.007</u> Stavropulos-Laffaille, X., Chancibault, K., Brun, JM., Lemonsu, A., Masson, V., Boone, A., Andrieu, H., 2018. Improvements of the hydrological processes of the Town Energy Balance Model (TEB-Veg, SURFEX v7.3) for urban modelling and impact assessment. Geosci. Model Dev. Discuss. 1–28. <u>https://doi.org/10.5194/gmd-2018-39</u> Nature4Cities, D2.1 - System of integrated multi-scale and multi-thematic performance indicators for the assessment of urban challenges and NBS. <u>https://www.nature4cities.eu/post/nature4cities-defined-performance-indicators-to-assess-urban-challenges-and-nature-based-solutions</u> 	

Nature4Cities, D2.2 - Expert-modelling toolbox Nature4Cities, D2.3 – NBS database completed with urban performance data <u>https://www.nature4cities.eu/post/applicability-urban-</u> <u>challenges-and-indicators-real-case-studies</u> Nature4Cities, D2.4 - Development of a simplified urban performance assessment (SUA) tool

4.17 Flood peak reduction and delay

Project Name: CONNECTING Nature (Grant Agreement no. 730222) **Author/s and affiliations:** S. Connop¹, D. Dushkova², D. Haase², C. Nash¹

¹ Sustainability Research Institute, University of East London, UK

² Geography Department, Humboldt University of Berlin, Berlin, Germany

Flood peak reductio EO/RS combined)	n/delay (Applied and	Water Management
Description and justification	NBS can help tackle flood risk, for instance by increasing infiltration and evapotranspiration. Changing precipitation patterns due to climate change are expected to exacerbate flooding problems, for instance more intense rainfall events that exceed existing sewage system capacity. Applied approaches to flood peak reduction/delay include monitoring of SuDS performance using in-situ gauges. Typically, a weather station or weather radar data is used in combination with flowrate or water depth monitoring devices (e.g., datalogging v- notch weirs, tipping bucket rain gauges, in-line turbine flowmeters, depth sensors, soil moisture sensors, and infiltrometers). The weather data is used to calculate total rainfall entering the study area (e.g., rainfall depth/unit time x catchment area). Monitoring devices are then used to calculate the rate that water enters and/or leaves a nature-based solution feature. If compared to a control feature (without nature-based solution) or a baseline calculated for the site before the nature-based solution was installed, it is possible to calculate the percentage reduction in absolute height of peak floodwaters and the delay to peak flow. Remote sensing and GIS technologies coupled with computer modelling are useful tools for examining flood events in comparison with flood extent obtained for the annual rainfall using HEC-HMS and HEC- RAS. Using remote sensing data with the help of Flood	