Synergies with other indicators	Direct relation to <i>Height of flood peak</i> and <i>Time to flood peak</i> indicators		
Connection with SDGs	SDG 6 Clean water and sanitation, SDG 11 Sustainable cities and communities		
Opportunities for participatory data collection	No opportunities identified		
Additional information			
References	United States Department of Agriculture (USDA). (2004). National Engineering Handbook Part 630 Hydrology. Washington, D.C.: United States Department of Agriculture, Natural Resources Conservation Service. Retrieved from <u>https://www.nrcs.usda.gov/wps/portal/nrcs/detailfull/</u> <u>national/water/manage/hydrology/?cid=STELPRDB1043063</u>		

3.13.3 Rational method

Project Name: UNaLab (Grant Agreement no. 730052), CLEVER Cities (Grant Agreement no. 776604) and GROW GREEN (Grant Agreement no. 730283)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça², Maddalen Mendizabal³

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

³ TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain

Runoff coefficient	 Rational method 	Water Management
Description and justification	The extent of impermeable su continually increasing as cities the construction of buildings, etc. A significant consequence areas, which can also lead to affecting the quantity of surfa characteristics, land use and y and storm properties such as intensity (Sitterson et al. 201 is generated in two ways (Yar through saturation excess, wh the soil becomes saturated (for period of rainfall); or, through runoff is generated when the infiltration rate of water into the	rfaces in urban areas is s develop and expand, due to roads, streets, parking lots, e is greater runoff in urban flooding. Many factors are ce runoff, including soil vegetative cover, hillslope, rainfall duration, amount, and 7). In general, surface runoff ng, Li, Sun & Ni, 2014): nere runoff is generated when or example after a lengthy n infiltration excess, where rainfall intensity exceeds the he soil (for example during a

	heavy precipitation event when rain falls more rapidly than it can infiltrate the soil).		
Definition	Runoff in relation to precipitation quantity (m ³ /s or L/s)		
Strengths and weaknesses	 + A widely used method, which gives an empirical relation between rainfall intensity and peak flow - Requires significant judgment and understanding from the designer - For the method, several assumptions that are seldom met under natural conditions must be made 		
Measurement procedure and tool	nentRational Method for estimating 'peak' flow rates for simple urban watersheds/sewers. Often used for design discharges. Requires rainfall intensity, the runoff-coefficient (can be derived from published value) and watershed area (Kuichling, 1889).A simplified outline of the necessary steps to determine peak runoff using the Rational Method is:1. Determine the runoff coefficient (C). Typical values are listed in textbooks and manuals (e.g., Viessman & Lewis, 2003; VDOT, 2002). If needed, use a saturation factor (Cr) for storms with a recurrence intervals less than 10 years. These higher intensity storms require modification to estimation of runoff. Saturation factors are given by reference books and design manuals. Note that the saturation factor C_r multiplied by the runoff coefficient C should not exceed 1.0.Recurrence Interval (Years)Cr		
	2, 5 and 10	1.0	
	25	1.1	
	50	1.2	
	100	1.25	
	2. Determine the time of concent average rainfall intensity (<i>i</i>). The the time of concentration are de	tration (T_c) to estimate the emethods for determining	

average rainfall intensity (*i*). The methods for determining the time of concentration are described by, e.g., VDOT (2002). One of them is that the time of concentration is the time required for water to flow from the hydraulically most remote point in the drainage area to the point of study. 3. Determine the rainfall intensity (*i*). It is assumed that the duration is equal to the time of concentration. The rainfall intensity can be selected from the IDF curve. 4. Solve the equation of the Rational Method to obtain the estimated peak runoff:

	$Q = C_f CiA$		
	Where Q is maximum rate of runoff (cfs), C_f is saturation factor, C is runoff coefficient representing a ratio of runoff to rainfall (dimensionless), <i>i</i> is average rainfall intensity for a duration equal to the time of concentration for a selected return period (in/hr), and A is drainage area contributing to the point of study (ac).		
Scale of measurement	Plot or building scale to district scale. Used mostly for relatively small drainage areas, such as parking lots. The use should be limited to drainage areas <20 acres (ca. 8 ha).		
Data source			
Required data	Rainfall intensity, drainage area, saturation factor, runoff coefficient		
Data input type	Quantitative		
Data collection frequency	Annually; at minimum, before and after NBS implementation		
Level of expertise required	High – requires significant judgement on adequacy of calculated values		
Synergies with other indicators	Direct relation to <i>Height of flood peak</i> and <i>Time to flood peak</i> indicators		
Connection with SDGs	SDG 6 Clean water and sanitation, SDG 11 Sustainable cities and communities		
Opportunities for participatory data collection	No opportunities identified		
Additional informa	tion		
References	 Dhakal, N., Fang, X., Asquith, W.H. & Cleveland, T. (2013). Return period adjustment for runoff coefficients based on analysis in undeveloped Texas watersheds. Journal of Irrigation and Drainage Engineering, June 2013 Hayes, D.C., & Young, R.L. 2005. Comparison of Peak Discharge and Runoff Characteristic Estimates from the Rational Method to Field Observations for Small Basins in Central Virginia. Scientific Investigations Report 2005-5254. Reston, VA: United States Geological Survey. Viessman, W. & Lewis, G.L. (2003). Introduction to Hydrology. 5th edition. Upper Saddle River, NJ: Prentice Hall Virginia Department of Transportation (VDOT). (2019). Drainage Manual. Location and Design Division. Issued April 2002. Rev. March 2019. Richmond, VA: Virginia Department of Transportation. 		
	Transportation. Retrieved from		

3.13.4 Intensity-Duration-Frequency (IDF) curve method

Project Name: UNaLab (Grant Agreement no. 730052), CLEVER Cities (Grant Agreement no. 776604) and GROW GREEN (Grant Agreement no. 730283)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça², Maddalen Mendizabal³

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

³ TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, 20009 Donostia-San Sebastián, Spain

Runoff coefficient – IDF curves		Water Management
Description and justification	The extent of impermeable surfaces in urban areas is continually increasing as cities develop and expand, due to the construction of buildings, roads, streets, parking lots, etc. A significant consequence is greater runoff in urban areas, which can also lead to flooding. Many factors are affecting the quantity of surface runoff, including soil characteristics, land use and vegetative cover, hillslope, and storm properties such as rainfall duration, amount, and intensity (Sitterson et al. 2017). In general, surface runoff is generated in two ways (Yang, Li, Sun & Ni, 2014): through saturation excess, where runoff is generated when the soil becomes saturated (for example after a lengthy period of rainfall); or, through infiltration excess, where runoff is generated when the rainfall intensity exceeds the infiltration rate of water into the soil (for example during a heavy precipitation event when rain	
Definition	Runoff in relation to precipita	tion quantity (L/s or m ³ /s)
Strengths and weaknesses	 + IDF analysis provides a consummarizing regional rainfall useful in municipal stormwate - Requires significant judgme the designer - Requires fairly extensive his 	ivenient tool for information and thus it is er management practices nt and understanding from itoric rainfall data
Measurement procedure and tool	Statistical estimation of 'peak periods of 5,10,100 years bas	runoff rates for return sed on rainfall and