	for improving the tools Ideas for new tools The consortium who led the development of this toolkit has handed over the responsibilities for co-ordinating future work to the Green Infrastructure Value Network (GIVaN). Further information on the network can be found at: <u>www.bit.ly/givaluationtoolkit</u>			
Additional information				
References	 URBAN GreenUP Deliverable D5.3: City Diagnosis and Monitoring Procedures https://www.urbangreenup.eu/insights/deliverables/d5-3- city-diagnosis-and-monitoring-procedures.kl http://www.merseyforest.org.uk/services/gi-val/ Nowak, McPherson and Rowntree, Chicago's urban forest ecosystem: results of the Chicago urban forest climate project, USDA,1994 Air Pollution in the UK 2015. https://uk- air.defra.gov.uk/library/annualreport/index Bottalico, F., Chirici, G., Giannetti, F., De Marco, A., Nocentini, S., Paoletti, E., Salbitano, F., Sanesi, G., Serenelli, C., Travaglini, D., 2016. Air pollution removal by green infrastructures and urban forests in the city of Florence. Agric. Agric. Sci. Procedia 8, 243–251. doi: 10.1016/j.aaspro.2016.02.099. SDG indicator 3.9.1 https://unstats.un.org/sdgs/metadata/files/Metadata-03- 09-01.pdf SDG indicator 11.6.2. https://unstats.un.org/sdgs/metadata/files/Metadata-11- 06-02.pdf 			

2.5. Soil Temperature

Project Name: OPERANDUM (Grant Agreement no. 776848)

Author/s and affiliations: Slobodan B. Mickovski¹, Alejandro Gonzalez-Ollauri¹, Karen Munro¹

¹ Built Environment Asset Management Centre, Glasgow Caledonian University, Glasgow, Scotland, UK

Soil temperature		Climate Resilience Natural and Climate Hazards Green Space Management
Description and justification	Soil temperature is intrir activity and to biogeoche the soil. Different soil te	nsically related to soil microbial emical and hydrological fluxes in mperatures would be preferred by

	different vegetation whose roots would provide strengths and resistance against erosion or sliding.	
Definition	The degree or intensity of heat present in soil, especially as expressed according to a comparative scale and shown by a thermometer or perceived by touch.	
Strengths and weaknesses	Strengths: standard measurement methods exist; closely linked to air temperature; linked to complex soil biogeochemical processes; Weaknesses: high resolution intrusive investigation is needed; site-specific investigation needed to establish connections with other environmental variables and processes.	
Measurement procedure and tool	Trial pits or boreholes excavated and samples taken or thermometer and/or thermocouples inserted and measurement taken in situ	
Scale of measurement	Micro / point measurement	
Data source		
Required data	Temperature	
Data input type	Value (units of temperature)	
Data collection frequency	continuous	
Level of expertise required	Low	
Synergies with other indicators	Soil strength, soil type, aggregate stability, soil matric suction, plant evapotranspiration, soil water flux, soil carbon flux	
Connection with SDGs	11, 13, 15, 17	
Opportunities for participatory data collection	Yes	
Additional information		
References	Gonzalez-Ollauri. A., Stokes, A., Mickovski, S.B., 2020. A novel framework to study the effect of tree architectural traits on stemflow yield and its consequences for soil-water dynamics. Journal of Hydrology, 582 (124448)	