planning. EMS Annual Meeting Abstracts Vol. 16, EMS2 341, 2019.	:019-
Nature4Cities, D2.1 - System of integrated multi-scale and m	ulti-
urban challenges and NBS.	
https://www.nature4cities.eu/post/nature4cities-defined-	
performance-indicators-to-assess-urban-challenges-ar	d-
nature-based-solutions.	
Nature4Cities, D2.2 - Expert-modelling toolbox	
Nature4Cities, D2.3 – NBS database completed with urban	
performance data	
https://www.nature4cities.eu/post/applicability-urban-challer and-indicators-real-case-studies	ges-
Nature4Cities, D2.4 - Development of a simplified urban	
performance assessment (SUA) tool	

2.1.5 Measured soil carbon content

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Ana Ascenso², Silvia Coelho², Ana Isabel Miranda², Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Total carbon stora soil per unit area p	ge and sequestration in per unit time	Climate Resilience Green Space Management
Description and justification	Accounting for C stored in so area can provide an indicatio green spaces, total free surfa vegetation in the area examin and sequestration also provid climate change mitigation, ar use, planning and management important to note the substant sequestration and storage can NBS.	Il and vegetation in an urban n of the condition of natural ice area and total quantity of ned. Measures of C storage le a tangible connection to nd the impacts of local land ent decision-making. It is ntial variation in C pacity of different types of
Definition	Total amount of carbon (tonn and unit time	es) stored in soil per unit area
Strengths and weaknesses	+ Physical sampling and labo accurate information, with im C storage in soil with increasi	ratory analysis of soil C yields proved accuracy of estimated ing sampling intensity

	 + Combustion-based analytical methods are relatively simple and widely applicable - Small changes in soil C may be difficult to quantify in carbonate-rich soils, in which case multiple analytical steps may be required to obtain reliable measurements - Soil sample collection is relatively labour-intensive; analyses typically require an external laboratory (rather than analysed in-house)
Measurement procedure and tool	The most reliable and accurate method of determining soil C content is field sampling followed by laboratory analysis. Combustion is an accurate, commonly used analytical technique to quantify total C in soil – including both organic and inorganic soil C. Combustion analysis involves converting all forms of C in the soil to CO ₂ by wet or dry combustion, then measuring evolved CO ₂ . Change in soil C content occurs most readily in the SOC fraction, so observed changes in total soil C content.
	Sampling is performed using a measuring tape (for establishment of sampling transect or grid), soil corer, and plastic bags.
	It may be challenging to detect small changes in soil C content in soils that contain substantial inorganic (mineral) C. A rapid field test of the soil's reactivity to acid can indicate whether it may be necessary to undertake more intensive analyses of soil samples to quantify both the organic and inorganic C fractions, rather than total (inorganic + organic) C by combustion. Rapid assessment of soil carbonate content involves reacting a small sample (ca. 1 g) of soil with 1-2 drops of 1 M hydrochloric acid (HCI) in a glass or porcelain container and observing the reaction for \sim 5 min. The reaction between soil carbonate minerals and HCI is visible as bubbles/effervescence as bubbles of CO ₂ are produced.
	If the HCI 'field test' indicates the presence of inorganic C then the soil sample should be pre-treated to remove inorganic C prior to determination of organic C content by wet digestion. A sample of the carbonate-containing soil should be treated at room with a mixture of dilute sulphuric acid (H ₂ SO ₄) and ferrous sulphate (FeSO ₄) for at least 20 min or until effervescence appears to cease. The flask containing the soil and H ₂ SO ₄ /FeSO ₄ mixture should then be heated over a flame and boiled slowly for 1.5 min to
	destroy any remaining carbonate. Finally, pulverised

	potassium dichromate ($K_2Cr_2O_7$) should be added to the mixture and organic C determined by chromic acid digestion (wet combustion) (Nelson & Sommers, 1996).			
Scale of measurement	Plot scale; it is possible to extrapolate results from small number of field samples based on soil maps to approximate soil C storage at landscape (regional) scale			
Data source				
Required data	Site characteristics, including maps of soil type, topography, and vegetative cover. Average soil bulk density (in kg/m ³ ; can be measured or estimated based on soil type). Obtainable from local municipality, department of environment, geological survey.			
Data input type	Quantitative			
Data collection frequency	Annually, including at a minimum measurement before and after NBS implementation			
Level of expertise required	Low to Moderate – field sampling Moderate – combustion analysis in laboratory conditions High – soil sample pre-treatment for determination of organic C content			
Synergies with other indicators	Used for evaluating C storage necessary for <i>Carbon removed or stored per unit area per unit time</i> indicator			
Connection with SDGs	SDG 11 Sustainable cities and communities, SDG 13 Climate action, SDG 15 Life on land			
Opportunities for participatory data collection	Participatory data collection is feasible through soil sample collection			
Additional information				
References	 Nelson, D.W., & Sommers, L.E. (1996). Total Carbon, Organic Carbon, and Organic Matter. In D.L. Sparks (Ed.), <i>Methods of</i> <i>Soil Analysis Part 3, Chemical Methods</i> (pp. 961-1010). Madison, WI: Soil Science Society of America, Inc. Rowell, D.L. (2014). <i>Soil Science: Methods & Applications</i>. New York: Routledge. Soil Survey Staff. (2009). <i>Soil Survey Field and Laboratory Methods</i> <i>Manual. Soil Survey Investigations Report No. 51, Version</i> 2.0. R. Burt (Ed.). Lincoln, NE: United States Department of Agriculture, Natural Resources Conservation Service. 			