2.17 Rate of evapotranspiration

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Rate of evapotranspiration		Climate Resilience
		Water Management
Description and justification	Evapotranspiration (ET) is a combination of two separate processes whereby water is lost from the soil surface by evaporation and from vegetation by transpiration. Water evaporates from surfaces when sufficient heat is supplied for liquid water to transition to water vapour. During transpiration, plant tissues vaporise water, which is then released to the atmosphere through stomatal openings on the plant leaf. Nearly all water taken up by plants is released to the atmosphere through transpiration. In addition to the non-uniformity of urban vegetation, shading of urban vegetation by landscape trees and structures and edge effects due to the relatively small scale of urban green space in comparison to commercial crop fields can significantly influence ET (Snyder, Pedras, Montazar, Henry, & Ackley, 2015).	
Definition	Measured or modelled evapotra expressed in mm per unit time	anspiration (typically , e.g., mm/day)
Strengths and weaknesses	 + The reference evapotranspiral standard to which: (a) evapotra periods of the year or in other (b) evapotranspiration of other Pereira, Raes, & Smith, 1998). + Standard, widely-applied tector - Challenging and expensive to - Requires high level of expertise. 	ation, <i>ET</i> _o , provides a anspiration at different regions can be compared; crops can be related (Allen, hnique measure directly se to apply
Measurement procedure and tool	Evapotranspiration is measured accurate measurements of vali the soil water balance in lysime In practice, ET is commonly ca data. Commercially-available generally meteorological station using monitored temperature, in and direction, solar radiation, page Mantaith equation	involving specific devices and rious physical parameters or iters. Iculated using meteorological ET monitoring stations are ns that calculate potential ET relative humidity, wind speed and precipitation data. The

standard technique for calculation of reference evapotranspiration, ETo from crops (Allen, Pereira, Raes, & Smith, 1998). The FAO Penman-Monteith method to estimate ETo is presented in Equation 1:

$$ET_o = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273}u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$

Where ETo is reference evapotranspiration [mm day-1], Rn is net radiation at the crop surface [MJ m-2 day-1], G is soil heat flux density [MJ m-2 day-1], T is mean daily air temperature at 2 m height [°C], u2 is wind speed at 2 m height [m s-1], es is saturation vapour pressure [kPa], ea is actual vapour pressure [kPa], es - ea is saturation vapour pressure deficit [kPa], D is slope vapour pressure curve [kPa °C-1], and g is psychrometric constant [kPa °C-1].

Using the Penman-Monteith equation, ET from plant surfaces under standard conditions is determined using an experimentally-determined coefficient (kc) to relate the ET for a specific crop species, ETc, to ETo. Thus, for a given crop species:

$$ET_c = k_c \times ET_0$$

For urban landscapes, the landscape coefficient method (LCM), which uses a different set of coefficients rather than kc to estimate ET, may be more appropriate (Costello, Matheny, Clark, & Jones, 2000):

$$ET = k_L \times ET = k_d \times k_s \times k_{mc} \times ET_0$$

where kL is a landscape coefficient defined as a product of kd, a planting density factor, kS, a species-specific factor, and kmc, a microclimate factor.

The modifications of the Penman-Monteith equation for plantspecific conditions can be found in the publications by, e.g., Litvak and Pataki (2016) and Litvak, Manago, Hogue, and Pataki (2016).

Scale of measurement	Plot scale, can be extrapolated using land cover data
Data source	
Required data	Radiation, air temperature, wind speed, vapour pressure, soil heat flux density
Data input type	Quantitative
Data collection frequency	Annually, and before and after NBS implementation

Level of expertise required	High – requires ability to apply the Penman-Monteith equation and evaluate the results	
Synergies with other indicators	Related to <i>Daily temperature range, Land surface temperature</i> and <i>Surface reflectance - Albedo</i> indicators; a possible consequence of <i>Green space management</i> and <i>Place regeneration</i> indicator groups	
Connection with SDGs	SDG 11 Sustainable cities and communities	
Opportunities for participatory data collection	No opportunities identified	
Additional informa	ition	
References	 Allen, R.G., Pereira, L.S., Raes, D., & Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/3/X0490E/x0490e00.htm#Contents Costello, L.R., Matheny, N.P., Clark, J.R., & Jones, K.S. (2000). A guide to estimating irrigation water needs of landscape plantings in California, the landscape coefficient method and WUCOLS III. Berkeley, CA, USA: University of California Cooperative Extension, California Department of Water Resources. https://ucanr.edu/sites/WUCOLS/ Litvak, E., Manago, K.F., Hogue, T.S., & Pataki, D.E. (2016). Evapotranspiration of urban landscapes in Los Angeles, California at the municipal scale. Water Resources Research, 53(5), 4236-4252. Litvak, E. & Pataki, D.E. (2016). Evapotranspiration of urban lawns in a semi-arid environment: An in situ evaluation of microclimatic conditions and watering recommendations. Journal of Arid Environments, 134, 87-96. Snyder, R.L., Pedras, C., Montazar, A., Henry, J.M., & Ackley, D. (2015). Advances in ET-based landscape irrigation management. Agricultural Water Management, 147, 187-197 	