References	URBAN GreenUP Deliverable D2.4 - Monitoring program to Valladolid.
	https://www.urbangreenup.eu/insights/deliverables/d2-4
	monitoring-program-to-valladolid.kl
	URBAN GreenUP Deliverable D3.4 - Monitoring program to
	Liverpool
	https://www.urbangreenup.eu/insights/deliverables/d3-4
	monitoring-program-to-liverpool.kl
	URBAN GreenUP Deliverable D4.4 – Monitoring program to Izmir
	https://www.urbangreenup.eu/insights/deliverables/d4-4
	monitoring-program-to-izmir.kl
	URBAN GreenUP Deliverable D5.3: City Diagnosis and Monitoring
	Procedures
	https://www.urbangreenup.eu/insights/deliverables/d5-3-
	city-diagnosis-and-monitoring-procedures.kl
	The Mersey Forest & The University of Manchester (2011). STAR
	tools: surface temperature and runoff tools for assessing the
	potential of green infrastructure in adapting urban areas to
	climate change. Part of the EU Interreg IVC GRaBS project. www.ginw.co.uk/climatechange.

2.13 Mean or peak daytime temperature

2.13.1 Mean or peak daytime temperature - Direct temperature measurement

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Ana Ascenso², Silvia Coelho², Ana Isabel Miranda², Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Mean or peak day measurements	time temperature – Direct	Climate Resilience
Description and justification	Green urban infrastructure can change adaptation by reducing temperatures with the help of s increased evapotranspiration. (infrastructure can also provide shelter from wind, thereby red (Cheng, Cheung, & Chu, 2010) microclimate, green infrastruct	air and surface shading and through Conversely, green urban insulation from cold and/or ucing heating requirements . By moderating the urban

	in energy use and improved thermal comfort (Demuzere et al., 2014). The cooling effect of green space results in lower temperatures in the surrounding built environment. A simulation of the surrounding buildings showed the potential for a 10% decrease in the cooling load due to the presence of the green area in the vicinity (Yu & Hien, 2006).	
Definition	Mean or peak daytime local temperature by direct measurement (°C)	
Strengths and weaknesses	 + Straightforward assessment of ambient air temperature + Reliable in the long run - Requires a rather large amount of monitoring stations to be installed to monitor various NBS intervention areas 	
Measurement procedure and tool	Ambient air temperature can be assessed through continuous monitoring of temperature, near the NBS intervention area, and calculation of mean and peak daytime temperature before and after NBS implementation.	
Scale of measurement	Plot to district scale	
Data source		
Required data	Automated continuous monitoring of ambient air temperature	
Data input type	Quantitative	
Data collection frequency	Annually; at minimum, before and after NBS implementation	
Level of expertise required	Low	
Synergies with other indicators	A prerequisite for <i>Heatwave Risk</i> and <i>Urban Heat Island</i> indicators, and a requirement for <i>Depth to groundwater</i> indicator	
Connection with SDGs	SDG 3 Good health and well-being, SDG 11 Sustainable cities and communities, SDG 13 Climate action	
Opportunities for participatory data collection	Participatory data collection is feasible through direct temperature measurements if these are not automated	
Additional information		
References	 Cheng, C.Y., Cheung, K.K.S., & Chu, L.M. (2010). Thermal performance of a vegetated cladding system on facade walls. Building and Environment, 45(8), 1779-1787. Demuzere, M., Orru, K., Heidrich, O., Olazabal, E., Geneletti, D., Orru, H., Faehnle, M. (2014). Mitigating and adapting to climate change: Multi-functional and multi-scale assessment 	

of green urban infrastructure. Journal of Environmental Management, 146, 107-115.

Yu, C., & Hien, W.N. (2006). Thermal benefits of city parks. Energy and Buildings, 38, 105-120.

2.13.2 Mean or peak daytime temperature - Temperature modelling

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Ana Ascenso², Silvia Coelho², Ana Isabel Miranda², Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Mean or peak daytime temperature – Temperature modelling		Climate Resilience
Description and justification	Green urban infrastructure can significantly affect climate change adaptation by reducing air and surface temperatures with the help of shading and through increased evapotranspiration. Conversely, green urban infrastructure can also provide insulation from cold and/or shelter from wind, thereby reducing heating requirements (Cheng, Cheung, & Chu, 2010). By moderating the urban microclimate, green infrastructure can support a reduction in energy use and improved thermal comfort (Demuzere et al., 2014). The cooling effect of green space results in lower temperatures in the surrounding built environment. A simulation of the surrounding buildings showed the potential for a 10% decrease in the cooling load due to the presence of the green area in the vicinity (Yu & Hien, 2006).	
Definition	Mean or peak daytime local ter modelling (°C)	nperature by meteorological
Strengths and weaknesses	 + Allows the calculation with an grid, neighbourhood or city sca - Requires high level of experting 	lle neighbourhood
Measurement procedure and tool	Difference in temperature can application of a meteorological Research and Forecasting mod n.d.; NOAA, n.d.)	model such as the Weather