22.20 Morbidity, Mortality and Years of Life Lost due to poor air quality

Project Name: UNaLab (Grant Agreement no. 730052)

Author/s and affiliations: Laura Wendling¹, Ville Rinta-Hiiro¹, Maria Dubovik¹, Arto Laikari¹, Johannes Jermakka¹, Zarrin Fatima¹, Malin zu-Castell Rüdenhausen¹, Ana Ascenso², Ana Isabel Miranda², Peter Roebeling², Ricardo Martins², Rita Mendonça²

¹ VTT Technical Research Centre Ltd, P.O. Box 1000 FI-02044 VTT, Finland

² CESAM – Department of Environment and Planning, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Morbidity, Mortality a poor air quality	and Years of Life Lost due to	Air Quality Health and Wellbeing	
Description and justification	Air pollution has been related to numerous adverse health effects, typically expressed in several morbidity and mortality endpoints (see Costa et al., 2014). In particular, an increasing amount of epidemiological and clinical studies observes that exposure to air pollution is associated with increased risk of heart disease, myocardial infarction and stroke as well as lung cancer (e.g., Costa et al., 2014). While the impact of these health effects may appear low at the individual level, the overall public-health burden is sizable as the entire population is exposed (Pascal et al., 2011).		
Definition	Reduction in years of life (y) due to premature mortality in comparison with standard life expectancy (Morbidity): Long-term (annual) incidence of chronic bronchitis due to poor air quality calculated using atmospheric NO ₂ and PM ₁₀ data (Mortality): Long-term (annual) incidence of mortality due to poor air quality calculated using atmospheric PM _{2.5} , PM ₁₀ , O ₃ and NO ₂ data		
Strengths and weaknesses	+ The indicator is easy to define- The method needs a lot of input data		
Measurement procedure and tool	The general approach in health exposure-response functions, lipollutants to which the populat number of health events occurr et al., 2014; Silveira et al., 207 aspects are usually considered their air concentration levels, ii in terms of morbidity and mort groups, and iv) exposure time. usually calculated by:	impact assessment is to use inking the concentration of ion is exposed to the ring in that population (Costa 16). Therefore, the following : i) involved pollutants and) health indicators analysed ality, iii) affected age The health response is	

$\Delta R = IR \times CRF \times \Delta C \times Pop$

Where,

- ΔR is the response as a result of the number of the unfavourable implications (cases, days or episodes) over all health indicators;
- IR is the baseline morbidity/mortality annual rate (%); this information is available in the national statistical institute of each country;
- CRF is the correlation coefficient between the pollutant concentration variation and the probability of experiencing a specific health indicator (%; i.e., Relative Risk (RR) associated with a concentration change of 1 µg m⁻³);
- ΔC indicates the change in the pollutant concentration (µg m⁻³) after adoption of the adaptation/mitigation measure;
- Pop is the population units per age group exposed to pollution.

Morbidity (chronic bronchitis) due to poor air quality is calculated using NO₂ and PM₁₀ to determine CRF and ΔC in the preceding equation.

Mortality, assessed as total mortality, is calculated using PM_{10} , $PM_{2.5}$, O_3 and NO_2 to determine CRF and ΔC in the preceding equation.

Both morbidity and mortality are based on long-term (annual) effects (Table). Where air quality data are derived from WRF-Chem results can be calculated on a daily/weekly/monthly/annual basis at the grid, neighbourhood or city scale.

Pollutant	Health outcome	Age group
PM ₁₀	Chronic bronchitis (incidence)	>18 y
	Chronic bronchitis (prevalence)	6-18 y
	Total mortality	<1 y
		>30 y

Table. Air pollutant health indicators (WHO, 2013)

	PM _{2.5}	Total mortality	>30 y	
	NO ₂	Total mortality	>30 y	
		Prevalence of bronchitic symptoms in asthmatic children	5–14 у	
	O₃ (April- September)	Total mortality (respiratory diseases)	>30 y	
	Years of life lost (YLL) is an often-used health indicator, and refers to the total number of years of reduced life due to premature mortality. Using the mortality indicator, the YLL can be calculated as the number of deaths multiplied by a standard life expectancy at the age at which death occurs (see Gardner & Sanborn, 1990).			
Scale of measurement	Street to metropolitan scale			
Data source				
Required data	 i) involved pollutants and their air concentration levels, ii) health indicators analysed in terms of morbidity and mortality, iii) affected age groups, and iv) exposure time 			
Data input type	Quantitative			
Data collection frequency	Daily, weekly, monthly or annually			
Level of expertise required	Moderate			
Synergies with other indicators	Other indicators in the Air quality indicator group			
Connection with SDGs	SDG 3 Good health and well-being, SDG 15 Life on land			
Opportunities for participatory data collection	No opportunities identified			
Additional information				
References	Costa, S., Ferreira, J., Silveira, C., Costa, C., Lopes, D., Relvas, H., Teixeira, J.P. (2014). Integrating Health on Air Quality Assessment-Review Report on Health Risks of Two Major European Outdoor Air Pollutants: PM and NO2. Journal of			

Toxicology and Environmental Health - Part B Critical Reviews, 17(6), 307-340.

- Gardner, J.W., & Sanborn, J.S. (1990). Years of potential life lost (YPLL) – what does it measure? Epidemiology (Cambridge, Mass.), 1(4), 322–329.
- Pascal, M., Corso, M., Ung, A., Declercq, C., Medina, S. & Aphekom. (2011). APHEKON-Improving knowledge and communication for decision making on air pollution and health in Europe, Guidelines for assessing the health impacts of air pollution in European cities, Work Package 5, Deliverable D5. Saint-Maurice, France: French Institute for Public Health Surveillance.
- Silveira C., Roebeling P., Lopes M., Ferreira J., Costa S., Teixeira J.P., ... Miranda A.I. (2016). Assessment of health benefits related to air quality improvement strategies in urban areas: An Impact Pathway Approach. Journal of Environmental Management, 183, 694-702.

22.21 Prevalence and incidence of autoimmune diseases

Project Name: CONNECTING Nature (Grant Agreement no. 730222) **Author/s and affiliations:** Adina Dumitru¹, Catalina Young², Irina Macsinga²

¹ Universitry of A Coruña, Spain

² West University of Timisoara, Romania

Prevalence and incidence of autoimmune diseases		Health and Wellbeing
Description and justification	Numerous authors stress the releater regulatory mechanisms in the margenerally expected beneficial effect (Hanski et al, 2012; Kuo, 2015; Fet al., 2015). Rook (2013) argue consequences of exposure to the (e.g., sunlight, physical exercise) regulatory effects of microbial bio levels, low inflammation, low cyto and the psychological rewards of (e.g., relaxation, restoration, exer These notions have been brought <i>hypothesis</i> (<i>i.e.</i> , <i>Old Friends mech hypothesis</i>) that explains the incre- chronic inflammatory diseases (au inflammatory bowel diseases) in u high-income countries by a predis- regulation of inflammation graduater	vance of immune- nifestation of the cts of exposure to nature cook, 2013; von Hertzen that multiple physiological natural environment supplement the immune- diversity (i.e., low CRP okine response to stress) interaction with nature rcise, social capital). forth by <i>the hygiene</i> <i>hanism, biodiversity</i> easing prevalence of utoimmunity, allergy and urban communities in sposition to poor ally developed through